Sylvester matrix equations are ubiquitous in scientific computing. However, few solution techniques exist for their generalized multiterm version, as they recently arose in stochastic Galerkin finite element discretizations and isogeometric analysis. In this work, we consider preconditioning techniques for the iterative solution of generalized Sylvester equations. They consist in constructing low Kronecker rank approximations of either the operator itself or its inverse. In the first case, applying the preconditioning operator requires solving standard Sylvester equations, for which very efficient solution methods have already been proposed. In the second case, applying the preconditioning operator only requires computing matrix-matrix multiplications, which are also highly optimized on modern computer architectures. Moreover, low Kronecker rank approximate inverses can be easily combined with sparse approximate inverse techniques, thereby further speeding up their application with little or no damage to their preconditioning capability.
Large machine learning models are revolutionary technologies of artificial intelligence whose bottlenecks include huge computational expenses, power, and time used both in the pre-training and fine-tuning process. In this work, we show that fault-tolerant quantum computing could possibly provide provably efficient resolutions for generic (stochastic) gradient descent algorithms, scaling as $\mathcal{O}(T^2 \times \text{polylog}(n))$, where $n$ is the size of the models and $T$ is the number of iterations in the training, as long as the models are both sufficiently dissipative and sparse, with small learning rates. Based on earlier efficient quantum algorithms for dissipative differential equations, we find and prove that similar algorithms work for (stochastic) gradient descent, the primary algorithm for machine learning. In practice, we benchmark instances of large machine learning models from 7 million to 103 million parameters. We find that, in the context of sparse training, a quantum enhancement is possible at the early stage of learning after model pruning, motivating a sparse parameter download and re-upload scheme. Our work shows solidly that fault-tolerant quantum algorithms could potentially contribute to most state-of-the-art, large-scale machine-learning problems.
The nonlocality of the fractional operator causes numerical difficulties for long time computation of the time-fractional evolution equations. This paper develops a high-order fast time-stepping discontinuous Galerkin finite element method for the time-fractional diffusion equations, which saves storage and computational time. The optimal error estimate $O(N^{-p-1} + h^{m+1} + \varepsilon N^{r\alpha})$ of the current time-stepping discontinuous Galerkin method is rigorous proved, where $N$ denotes the number of time intervals, $p$ is the degree of polynomial approximation on each time subinterval, $h$ is the maximum space step, $r\ge1$, $m$ is the order of finite element space, and $\varepsilon>0$ can be arbitrarily small. Numerical simulations verify the theoretical analysis.
Recently, quantum computing experiments have for the first time exceeded the capability of classical computers to perform certain computations -- a milestone termed "quantum computational advantage." However, verifying the output of the quantum device in these experiments required extremely large classical computations. An exciting next step for demonstrating quantum capability would be to implement tests of quantum computational advantage with efficient classical verification, such that larger system sizes can be tested and verified. One of the first proposals for an efficiently-verifiable test of quantumness consists of hiding a secret classical bitstring inside a circuit of the class IQP, in such a way that samples from the circuit's output distribution are correlated with the secret (arXiv:0809.0847). The classical hardness of this protocol has been supported by evidence that directly simulating IQP circuits is hard, but the security of the protocol against other (non-simulating) classical attacks has remained an open question. In this work we demonstrate that the protocol is not secure against classical forgery. We describe a classical algorithm that can not only convince the verifier that the (classical) prover is quantum, but can in fact can extract the secret key underlying a given protocol instance. Furthermore, we show that the key extraction algorithm is efficient in practice for problem sizes of hundreds of qubits. Finally, we provide an implementation of the algorithm, and give the secret vector underlying the "$25 challenge" posted online by the authors of the original paper.
Stochastic optimization methods have been hugely successful in making large-scale optimization problems feasible when computing the full gradient is computationally prohibitive. Using the theory of modified equations for numerical integrators, we propose a class of stochastic differential equations that approximate the dynamics of general stochastic optimization methods more closely than the original gradient flow. Analyzing a modified stochastic differential equation can reveal qualitative insights about the associated optimization method. Here, we study mean-square stability of the modified equation in the case of stochastic coordinate descent.
The Multilevel Monte Carlo (MLMC) approach usually works well when estimating the expected value of a quantity which is a Lipschitz function of intermediate quantities, but if it is a discontinuous function it can lead to a much slower decay in the variance of the MLMC correction. This article reviews the literature on techniques which can be used to overcome this challenge in a variety of different contexts, and discusses recent developments using either a branching diffusion or adaptive sampling.
Multivariate imputation by chained equations (MICE) is one of the most popular approaches to address missing values in a data set. This approach requires specifying a univariate imputation model for every variable under imputation. The specification of which predictors should be included in these univariate imputation models can be a daunting task. Principal component analysis (PCA) can simplify this process by replacing all of the potential imputation model predictors with a few components summarizing their variance. In this article, we extend the use of PCA with MICE to include a supervised aspect whereby information from the variables under imputation is incorporated into the principal component estimation. We conducted an extensive simulation study to assess the statistical properties of MICE with different versions of supervised dimensionality reduction and we compared them with the use of classical unsupervised PCA as a simpler dimensionality reduction technique.
In this paper, we investigate the structure of the Schur complement matrix for the fully-staggered finite-difference discretization of the stationary Stokes equation. Specifically, we demonstrate that the structure of the Schur complement matrix depends qualitatively on a particular characteristic, namely the number of non-unit eigenvalues, and the two limiting cases are of special interest.
Ordinary differential equations (ODEs), via their induced flow maps, provide a powerful framework to parameterize invertible transformations for the purpose of representing complex probability distributions. While such models have achieved enormous success in machine learning, particularly for generative modeling and density estimation, little is known about their statistical properties. This work establishes the first general nonparametric statistical convergence analysis for distribution learning via ODE models trained through likelihood maximization. We first prove a convergence theorem applicable to arbitrary velocity field classes $\mathcal{F}$ satisfying certain simple boundary constraints. This general result captures the trade-off between approximation error (`bias') and the complexity of the ODE model (`variance'). We show that the latter can be quantified via the $C^1$-metric entropy of the class $\mathcal F$. We then apply this general framework to the setting of $C^k$-smooth target densities, and establish nearly minimax-optimal convergence rates for two relevant velocity field classes $\mathcal F$: $C^k$ functions and neural networks. The latter is the practically important case of neural ODEs. Our proof techniques require a careful synthesis of (i) analytical stability results for ODEs, (ii) classical theory for sieved M-estimators, and (iii) recent results on approximation rates and metric entropies of neural network classes. The results also provide theoretical insight on how the choice of velocity field class, and the dependence of this choice on sample size $n$ (e.g., the scaling of width, depth, and sparsity of neural network classes), impacts statistical performance.
In this paper, efficient alternating direction implicit (ADI) schemes are proposed to solve three-dimensional heat equations with irregular boundaries and interfaces. Starting from the well-known Douglas-Gunn ADI scheme, a modified ADI scheme is constructed to mitigate the issue of accuracy loss in solving problems with time-dependent boundary conditions. The unconditional stability of the new ADI scheme is also rigorously proven with the Fourier analysis. Then, by combining the ADI schemes with a 1D kernel-free boundary integral (KFBI) method, KFBI-ADI schemes are developed to solve the heat equation with irregular boundaries. In 1D sub-problems of the KFBI-ADI schemes, the KFBI discretization takes advantage of the Cartesian grid and preserves the structure of the coefficient matrix so that the fast Thomas algorithm can be applied to solve the linear system efficiently. Second-order accuracy and unconditional stability of the KFBI-ADI schemes are verified through several numerical tests for both the heat equation and a reaction-diffusion equation. For the Stefan problem, which is a free boundary problem of the heat equation, a level set method is incorporated into the ADI method to capture the time-dependent interface. Numerical examples for simulating 3D dendritic solidification phenomenons are also presented.
In this paper we study the satisfiability and solutions of group equations when combinatorial, algebraic and language-theoretic constraints are imposed on the solutions. We show that the solutions to equations with length, lexicographic order, abelianisation or context-free constraints added, can be effectively produced in finitely generated virtually abelian groups. Crucially, we translate each of the constraints above into a rational set in an effective way, and so reduce each problem to solving equations with rational constraints, which is decidable and well understood in virtually abelian groups. A byproduct of our results is that the growth series of a virtually abelian group, with respect to any generating set and any weight, is effectively computable. This series is known to be rational by a result of Benson, but his proof is non-constructive.