Bounded model checking (BMC) is an efficient formal verification technique which allows for desired properties of a software system to be checked on bounded runs of an abstract model of the system. The properties are frequently described in some temporal logic and the system is modeled as a state transition system. In this paper we propose a novel counting logic, $\mathcal{L}_{C}$, to describe the temporal properties of client-server systems with an unbounded number of clients. We also propose two dimensional bounded model checking ($2D$-BMC) strategy that uses two distinguishable parameters, one for execution steps and another for the number of tokens in the net representing a client-server system, and these two evolve separately, which is different from the standard BMC techniques in the Petri Nets formalism. This $2D$-BMC strategy is implemented in a tool called DCModelChecker which leverages the $2D$-BMC technique with a state-of-the-art satisfiability modulo theories (SMT) solver Z3. The system is given as a Petri Net and properties specified using $\mathcal{L}_{C}$ are encoded into formulas that are checked by the solver. Our tool can also work on industrial benchmarks from the Model Checking Contest (MCC). We report on these experiments to illustrate the applicability of the $2D$-BMC strategy.
In recent years, ASR systems have reached remarkable performance on specific tasks for which sufficient amounts of training data are available, like e.g. LibriSpeech. However, varying acoustic and recording conditions and speaking styles and a lack of sufficient in-domain training data still pose challenges to the development of accurate models. In this work, we present our efforts for the development of ASR systems for a conversational telephone speech translation task in the medical domain for three languages (Arabic, German, Vietnamese) to support emergency room interaction between physician and patient across language barriers. We study different training schedules and data combination approaches in order to improve the system's performance, as well as analyze where limited available data is used most efficiently.
The Abstraction Refinement Model has been widely adopted since it was firstly proposed many decades ago. This powerful model of software evolution process brings important properties into the system under development, properties such as the guarantee that no extra behavior (specifically harmful behaviors) will be observed once the system is deployed. However, perfect systems with such a guarantee are not a common thing to find in real world cases, anomalies and unspecified behaviors will always find a way to manifest in our systems, behaviors that are addressed in this paper with the name "emergent behavior". In this paper, we extend the Abstract Refinement Model to include the concept of the emergent behavior. Eventually, this should enable system developers to: (i) Concretely define what an emergent behavior is, (ii) help reason about the potential sources of the emergent behavior along the development process, which in return will help in controlling the emergent behavior at early steps of the development process.
We present an efficient parametric model checking (PMC) technique for the analysis of software performability, i.e., of the performance and dependability properties of software systems. The new PMC technique works by automatically decomposing a parametric discrete-time Markov chain (pDTMC) model of the software system under verification into fragments that can be analysed independently, yielding results that are then combined to establish the required software performability properties. Our fast parametric model checking (fPMC) technique enables the formal analysis of software systems modelled by pDTMCs that are too complex to be handled by existing PMC methods. Furthermore, for many pDTMCs that state-of-the-art parametric model checkers can analyse, fPMC produces solutions (i.e., algebraic formulae) that are simpler and much faster to evaluate. We show experimentally that adding fPMC to the existing repertoire of PMC methods improves the efficiency of parametric model checking significantly, and extends its applicability to software systems with more complex behaviour than currently possible.
Business Collaboration Platforms like Microsoft Teams and Slack enable teamwork by supporting text chatting and third-party resource integration. A user can access online file storage, make video calls, and manage a code repository, all from within the platform, thus making them a hub for sensitive communication and resources. The key enabler for these productivity features is a third-party application model. We contribute an experimental security analysis of this model and the third-party apps. Performing this analysis is challenging because commercial platforms and their apps are closed-source systems. Our analysis methodology is to systematically investigate different types of interactions possible between apps and users. We discover that the access control model in these systems violates two fundamental security principles: least privilege and complete mediation. These violations enable a malicious app to exploit the confidentiality and integrity of user messages and third-party resources connected to the platform. We construct proof-of-concept attacks that can: (1) eavesdrop on user messages without having permission to read those messages; (2) launch fake video calls; (3) automatically merge code into repositories without user approval or involvement. Finally, we provide an analysis of countermeasures that systems like Slack and Microsoft Teams can adopt today.
This paper introduces a new modeling framework for the statistical analysis of point patterns on a manifold M_{d}, defined by a connected and compact two-point homogeneous space, including the special case of the sphere. The presented approach is based on temporal Cox processes driven by a L^{2}(\mathbb{M}_{d})-valued log-intensity. Different aggregation schemes on the manifold of the spatiotemporal point-referenced data are implemented in terms of the time-varying discrete Jacobi polynomial transform of the log-risk process. The n-dimensional microscale point pattern evolution in time at different manifold spatial scales is then characterized from such a transform. The simulation study undertaken illustrates the construction of spherical point process models displaying aggregation at low Legendre polynomial transform frequencies (large scale), while regularity is observed at high frequencies (small scale). K-function analysis supports these results under temporal short-, intermediate- and long-range dependence of the log-risk process.
Recently, Model Predictive Contouring Control (MPCC) has arisen as the state-of-the-art approach for model-based agile flight. MPCC benefits from great flexibility in trading-off between progress maximization and path following at runtime without relying on globally optimized trajectories. However, finding the optimal set of tuning parameters for MPCC is challenging because (i) the full quadrotor dynamics are non-linear, (ii) the cost function is highly non-convex, and (iii) of the high dimensionality of the hyperparameter space. This paper leverages a probabilistic Policy Search method - Weighted Maximum Likelihood (WML)- to automatically learn the optimal objective for MPCC. WML is sample-efficient due to its closed-form solution for updating the learning parameters. Additionally, the data efficiency provided by the use of a model-based approach allows us to directly train in a high-fidelity simulator, which in turn makes our approach able to transfer zero-shot to the real world. We validate our approach in the real world, where we show that our method outperforms both the previous manually tuned controller and the state-of-the-art auto-tuning baseline reaching speeds of 75 km/h.
The bootstrap is a popular data-driven method to quantify statistical uncertainty, but for modern high-dimensional problems, it could suffer from huge computational costs due to the need to repeatedly generate resamples and refit models. Recent work has shown that it is possible to reduce the resampling effort dramatically, even down to one Monte Carlo replication, for constructing asymptotically valid confidence intervals. We derive finite-sample coverage error bounds for these ``cheap'' bootstrap confidence intervals that shed light on their behaviors for large-scale problems where the curb of resampling effort is important. Our results show that the cheap bootstrap using a small number of resamples has comparable coverages as traditional bootstraps using infinite resamples, even when the dimension grows closely with the sample size. We validate our theoretical results and compare the performances of the cheap bootstrap with other benchmarks via a range of experiments.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.