Current endpointing (EP) solutions learn in a supervised framework, which does not allow the model to incorporate feedback and improve in an online setting. Also, it is a common practice to utilize costly grid-search to find the best configuration for an endpointing model. In this paper, we aim to provide a solution for adaptive endpointing by proposing an efficient method for choosing an optimal endpointing configuration given utterance-level audio features in an online setting, while avoiding hyperparameter grid-search. Our method does not require ground truth labels, and only uses online learning from reward signals without requiring annotated labels. Specifically, we propose a deep contextual multi-armed bandit-based approach, which combines the representational power of neural networks with the action exploration behavior of Thompson modeling algorithms. We compare our approach to several baselines, and show that our deep bandit models also succeed in reducing early cutoff errors while maintaining low latency.
Supervised learning is often affected by a covariate shift in which the marginal distributions of instances (covariates $x$) of training and testing samples $\mathrm{p}_\text{tr}(x)$ and $\mathrm{p}_\text{te}(x)$ are different but the label conditionals coincide. Existing approaches address such covariate shift by either using the ratio $\mathrm{p}_\text{te}(x)/\mathrm{p}_\text{tr}(x)$ to weight training samples (reweighting methods) or using the ratio $\mathrm{p}_\text{tr}(x)/\mathrm{p}_\text{te}(x)$ to weight testing samples (robust methods). However, the performance of such approaches can be poor under support mismatch or when the above ratios take large values. We propose a minimax risk classification (MRC) approach for covariate shift adaptation that avoids such limitations by weighting both training and testing samples. In addition, we develop effective techniques that obtain both sets of weights and generalize the conventional kernel mean matching method. We provide novel generalization bounds for our method that show a significant increase in the effective sample size compared with reweighted methods. The proposed method also achieves enhanced classification performance in both synthetic and empirical experiments.
The Adaptive Large Neighborhood Search (ALNS) algorithm has shown considerable success in solving complex combinatorial optimization problems (COPs). ALNS selects various heuristics adaptively during the search process, leveraging their strengths to find good solutions for optimization problems. However, the effectiveness of ALNS depends on the proper configuration of its selection and acceptance parameters. To address this limitation, we propose a Deep Reinforcement Learning (DRL) approach that selects heuristics, adjusts parameters, and controls the acceptance criteria during the search process. The proposed method aims to learn, based on the state of the search, how to configure the next iteration of the ALNS to obtain good solutions to the underlying optimization problem. We evaluate the proposed method on a time-dependent orienteering problem with stochastic weights and time windows, used in an IJCAI competition. The results show that our approach outperforms vanilla ALNS and ALNS tuned with Bayesian Optimization. In addition, it obtained better solutions than two state-of-the-art DRL approaches, which are the winning methods of the competition, with much fewer observations required for training. The implementation of our approach will be made publicly available.
Artificial intelligence (AI) is envisioned to play a key role in future wireless technologies, with deep neural networks (DNNs) enabling digital receivers to learn to operate in challenging communication scenarios. However, wireless receiver design poses unique challenges that fundamentally differ from those encountered in traditional deep learning domains. The main challenges arise from the limited power and computational resources of wireless devices, as well as from the dynamic nature of wireless communications, which causes continual changes to the data distribution. These challenges impair conventional AI based on highly-parameterized DNNs, motivating the development of adaptive, flexible, and light-weight AI for wireless communications, which is the focus of this article. Here, we propose that AI-based design of wireless receivers requires rethinking of the three main pillars of AI: architecture, data, and training algorithms. In terms of architecture, we review how to design compact DNNs via model-based deep learning. Then, we discuss how to acquire training data for deep receivers without compromising spectral efficiency. Finally, we review efficient, reliable, and robust training algorithms via meta-learning and generalized Bayesian learning. Numerical results are presented to demonstrate the complementary effectiveness of each of the surveyed methods. We conclude by presenting opportunities for future research on the development of practical deep receivers
Implicitly Normalized Forecaster (online mirror descent with Tsallis entropy as prox-function) is known to be an optimal algorithm for adversarial multi-armed problems (MAB). However, most of the complexity results rely on bounded rewards or other restrictive assumptions. Recently closely related best-of-both-worlds algorithm were proposed for both adversarial and stochastic heavy-tailed MAB settings. This algorithm is known to be optimal in both settings, but fails to exploit data fully. In this paper, we propose Implicitly Normalized Forecaster with clipping for MAB problems with heavy-tailed distribution on rewards. We derive convergence results under mild assumptions on rewards distribution and show that the proposed method is optimal for both linear and non-linear heavy-tailed stochastic MAB problems. Also we show that algorithm usually performs better compared to best-of-two-worlds algorithm.
Distributed computing is known as an emerging and efficient technique to support various intelligent services, such as large-scale machine learning. However, privacy leakage and random delays from straggling servers pose significant challenges. To address these issues, coded computing, a promising solution that combines coding theory with distributed computing, recovers computation tasks with results from a subset of workers. In this paper, we propose the adaptive privacy-preserving coded computing (APCC) strategy, which can adaptively provide accurate or approximated results according to the form of computation functions, so as to suit diverse types of computation tasks. We prove that APCC achieves complete data privacy preservation and demonstrate its optimality in terms of encoding rate, defined as the ratio between the computation loads of tasks before and after encoding. To further alleviate the straggling effect and reduce delay, we integrate hierarchical task partitioning and task cancellation into the coding design of APCC. The corresponding partitioning problems are formulated as mixed-integer nonlinear programming (MINLP) problems with the objective of minimizing task completion delay. We propose a low-complexity maximum value descent (MVD) algorithm to optimally solve these problems. Simulation results show that APCC can reduce task completion delay by at least 42.9% compared to other state-of-the-art benchmarks.
Providing online adaptive lightweight time series anomaly detection without human intervention and domain knowledge is highly valuable. Several such anomaly detection approaches have been introduced in the past years, but all of them were only implemented in one deep learning library. With the development of deep learning libraries, it is unclear how different deep learning libraries impact these anomaly detection approaches since there is no such evaluation available. Randomly choosing a deep learning library to implement an anomaly detection approach might not be able to show the true performance of the approach. It might also mislead users in believing one approach is better than another. Therefore, in this paper, we investigate the impact of deep learning libraries on online adaptive lightweight time series anomaly detection by implementing two state-of-the-art anomaly detection approaches in three well-known deep learning libraries and evaluating how these two approaches are individually affected by the three deep learning libraries. A series of experiments based on four real-world open-source time series datasets were conducted. The results provide a good reference to select an appropriate deep learning library for online adaptive lightweight anomaly detection.
We study a problem of best-effort adaptation motivated by several applications and considerations, which consists of determining an accurate predictor for a target domain, for which a moderate amount of labeled samples are available, while leveraging information from another domain for which substantially more labeled samples are at one's disposal. We present a new and general discrepancy-based theoretical analysis of sample reweighting methods, including bounds holding uniformly over the weights. We show how these bounds can guide the design of learning algorithms that we discuss in detail. We further show that our learning guarantees and algorithms provide improved solutions for standard domain adaptation problems, for which few labeled data or none are available from the target domain. We finally report the results of a series of experiments demonstrating the effectiveness of our best-effort adaptation and domain adaptation algorithms, as well as comparisons with several baselines. We also discuss how our analysis can benefit the design of principled solutions for fine-tuning.
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.