We present an analysis of total-variation (TV) on non-Euclidean parameterized surfaces, a natural representation of the shapes used in 3D graphics. Our work explains recent experimental findings in shape spectral TV [Fumero et al., 2020] and adaptive anisotropic spectral TV [Biton and Gilboa, 2022]. A new way to generalize set convexity from the plane to surfaces is derived by characterizing the TV eigenfunctions on surfaces. Relationships between TV, area, eigenvalue, eigenfunctions and their discontinuities are discovered. Further, we expand the shape spectral TV toolkit to include versatile zero-homogeneous flows demonstrated through smoothing and exaggerating filters. Last but not least, we propose the first TV-based method for shape deformation, characterized by deformations along geometrical bottlenecks. We show these bottlenecks to be aligned with eigenfunction discontinuities. This research advances the field of spectral TV on surfaces and its application in 3D graphics, offering new perspectives for shape filtering and deformation.
Batch Normalization's (BN) unique property of depending on other samples in a batch is known to cause problems in several tasks, including sequence modeling. Yet, BN-related issues are hardly studied for long video understanding, despite the ubiquitous use of BN in CNNs (Convolutional Neural Networks) for feature extraction. Especially in surgical workflow analysis, where the lack of pretrained feature extractors has led to complex, multi-stage training pipelines, limited awareness of BN issues may have hidden the benefits of training CNNs and temporal models end to end. In this paper, we analyze pitfalls of BN in video learning, including issues specific to online tasks such as a 'cheating' effect in anticipation. We observe that BN's properties create major obstacles for end-to-end learning. However, using BN-free backbones, even simple CNN-LSTMs beat the state of the art {\color{\colorrevtwo}on three surgical workflow benchmarks} by utilizing adequate end-to-end training strategies which maximize temporal context. We conclude that awareness of BN's pitfalls is crucial for effective end-to-end learning in surgical tasks. By reproducing results on natural-video datasets, we hope our insights will benefit other areas of video learning as well. Code is available at: \url{//gitlab.com/nct_tso_public/pitfalls_bn}
We define a general formulation of quantum PCPs, which captures adaptivity and multiple unentangled provers, and give a detailed construction of the quantum reduction to a local Hamiltonian with a constant promise gap. The reduction turns out to be a versatile subroutine to prove properties of quantum PCPs, allowing us to show: (i) Non-adaptive quantum PCPs can simulate adaptive quantum PCPs when the number of proof queries is constant. In fact, this can even be shown to hold when the non-adaptive quantum PCP picks the proof indices simply uniformly at random from a subset of all possible index combinations, answering an open question by Aharonov, Arad, Landau and Vazirani (STOC '09). (ii) If the $q$-local Hamiltonian problem with constant promise gap can be solved in $\mathsf{QCMA}$, then $\mathsf{QPCP}[q] \subseteq \mathsf{QCMA}$ for any $q \in O(1)$. (iii) If $\mathsf{QMA}(k)$ has a quantum PCP for any $k \leq \text{poly}(n)$, then $\mathsf{QMA}(2) = \mathsf{QMA}$, connecting two of the longest-standing open problems in quantum complexity theory. Moreover, we also show that there exists (quantum) oracles relative to which certain quantum PCP statements are false. Hence, any attempt to prove the quantum PCP conjecture requires, just as was the case for the classical PCP theorem, (quantumly) non-relativizing techniques.
Bilevel optimization refers to scenarios whereby the optimal solution of a lower-level energy function serves as input features to an upper-level objective of interest. These optimal features typically depend on tunable parameters of the lower-level energy in such a way that the entire bilevel pipeline can be trained end-to-end. Although not generally presented as such, this paper demonstrates how a variety of graph learning techniques can be recast as special cases of bilevel optimization or simplifications thereof. In brief, building on prior work we first derive a more flexible class of energy functions that, when paired with various descent steps (e.g., gradient descent, proximal methods, momentum, etc.), form graph neural network (GNN) message-passing layers; critically, we also carefully unpack where any residual approximation error lies with respect to the underlying constituent message-passing functions. We then probe several simplifications of this framework to derive close connections with non-GNN-based graph learning approaches, including knowledge graph embeddings, various forms of label propagation, and efficient graph-regularized MLP models. And finally, we present supporting empirical results that demonstrate the versatility of the proposed bilevel lens, which we refer to as BloomGML, referencing that BiLevel Optimization Offers More Graph Machine Learning. Our code is available at //github.com/amberyzheng/BloomGML. Let graph ML bloom.
Recent large language models (LLMs) have witnessed significant advancement in various tasks, including mathematical reasoning and theorem proving. As these two tasks require strict and formal multi-step inference, they are appealing domains for exploring the reasoning ability of LLMs but still face important challenges. Previous studies such as Chain-of-Thought (CoT) have revealed the effectiveness of intermediate steps guidance. However, such step-wise annotation requires heavy labor, leading to insufficient training steps for current benchmarks. To fill this gap, this work introduces MUSTARD, a data generation framework that masters uniform synthesis of theorem and proof data of high quality and diversity. MUSTARD synthesizes data in three stages: (1) It samples a few mathematical concept seeds as the problem category. (2) Then, it prompts a generative language model with the sampled concepts to obtain both the problems and their step-wise formal solutions. (3) Lastly, the framework utilizes a proof assistant (e.g., Lean Prover) to filter the valid proofs. With the proposed MUSTARD, we present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points. Each data point contains an informal statement, an informal proof, and a translated formal proof that passes the prover validation. We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data. We further apply the MUSTARDSAUCE for fine-tuning smaller language models. The fine-tuned Llama 2-7B achieves a 15.41% average relative performance gain in automated theorem proving, and 8.18% in math word problems. Codes and data are available at //github.com/Eleanor-H/MUSTARD.
The work deals with two major topics concerning the numerical analysis of Runge-Kutta-like (RK-like) methods, namely their stability and order of convergence. RK-like methods differ from additive RK methods in that their coefficients are allowed to depend on the solution and the step size. As a result of this, we also refer to them as non-standard additive RK (NSARK) methods. The first major part of this thesis is dedicated to providing a tool for deriving order conditions for NSARK methods. The proposed approach may yield implicit order conditions, which can be rewritten in explicit form using the NB-series of the stages. The obtained explicit order conditions can be further reduced using Gr\"obner bases computations. With the presented approach, it was possible for the first time to obtain conditions for the construction of 3rd and 4th order GeCo as well as 4th order MPRK schemes. Moreover, a new fourth order MPRK method is constructed using our theory and the order of convergence is validated numerically. The second major part is concerned with the stability of nonlinear time integrators preserving at least one linear invariant. We discuss how the given approach generalizes the notion of A-stability. We can prove that investigating the Jacobian of the generating map is sufficient to understand the stability of the nonlinear method in a neighborhood of the steady state. This approach allows for the first time the investigation of several modified Patankar. In the case of MPRK schemes, we compute a general stability function in a way that can be easily adapted to the case of PDRS. Finally, the approach from the theory of dynamical systems is used to derive a necessary condition for avoiding unrealistic oscillations of the numerical approximation.
We present a deep learning-based iterative approach to solve the discrete heterogeneous Helmholtz equation for high wavenumbers. Combining classical iterative multigrid solvers and convolutional neural networks (CNNs) via preconditioning, we obtain a learned neural solver that is faster and scales better than a standard multigrid solver. Our approach offers three main contributions over previous neural methods of this kind. First, we construct a multilevel U-Net-like encoder-solver CNN with an implicit layer on the coarsest grid of the U-Net, where convolution kernels are inverted. This alleviates the field of view problem in CNNs and allows better scalability. Second, we improve upon the previous CNN preconditioner in terms of the number of parameters, computation time, and convergence rates. Third, we propose a multiscale training approach that enables the network to scale to problems of previously unseen dimensions while still maintaining a reasonable training procedure. Our encoder-solver architecture can be used to generalize over different slowness models of various difficulties and is efficient at solving for many right-hand sides per slowness model. We demonstrate the benefits of our novel architecture with numerical experiments on a variety of heterogeneous two-dimensional problems at high wavenumbers.
We introduce AbDiffuser, an equivariant and physics-informed diffusion model for the joint generation of antibody 3D structures and sequences. AbDiffuser is built on top of a new representation of protein structure, relies on a novel architecture for aligned proteins, and utilizes strong diffusion priors to improve the denoising process. Our approach improves protein diffusion by taking advantage of domain knowledge and physics-based constraints; handles sequence-length changes; and reduces memory complexity by an order of magnitude, enabling backbone and side chain generation. We validate AbDiffuser in silico and in vitro. Numerical experiments showcase the ability of AbDiffuser to generate antibodies that closely track the sequence and structural properties of a reference set. Laboratory experiments confirm that all 16 HER2 antibodies discovered were expressed at high levels and that 57.1% of the selected designs were tight binders.
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.