亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

FPGA acceleration is becoming increasingly important to meet the performance demands of modern computing, particularly in big data or machine learning applications. As such, significant effort is being put into the optimization of the hardware accelerators. However, integrating accelerators into modern FPGA platforms, with key features such as high bandwidth memory (HBM), requires manual effort from a platform expert for every new application. We propose the Olympus multi-level intermediate representation (MLIR) dialect and Olympus-opt, a series of analysis and transformation passes on this dialect, for representing and optimizing platform aware system level FPGA architectures. By leveraging MLIR, our automation will be extensible and reusable both between many sources of input and many platform-specific back-ends.

相關內容

FPGA:ACM/SIGDA International Symposium on Field-Programmable Gate Arrays。 Explanation:ACM/SIGDA現場(chang)可編程門陣(zhen)列(lie)國際研(yan)討會。 Publisher:ACM。 SIT:

Ratings are frequently used to evaluate and compare subjects in various applications, from education to healthcare, because ratings provide succinct yet credible measures for comparing subjects. However, when multiple rating lists are combined or considered together, subjects often have missing ratings, because most rating lists do not rate every subject in the combined list. In this study, we propose analyses on missing value patterns using six real-world data sets in various applications, as well as the conditions for applicability of imputation algorithms. Based on the special structures and properties derived from the analyses, we propose optimization models and algorithms that minimize the total rating discordance across rating providers to impute missing ratings in the combined rating lists, using only the known rating information. The total rating discordance is defined as the sum of the pairwise discordance metric, which can be written as a quadratic function. Computational experiments based on real-world and synthetic rating data sets show that the proposed methods outperform the state-of-the-art general imputation methods in the literature in terms of imputation accuracy.

In the realm of e-commerce search, the significance of semantic matching cannot be overstated, as it directly impacts both user experience and company revenue. Query rewriting serves as an important technique to bridge semantic gaps inherent in the semantic matching process. However, existing query rewriting methods often struggle to effectively optimize long-tail queries and alleviate the phenomenon of \textit{``\nothing''} caused by semantic gap. In this paper, we present \textbf{\method}, a comprehensive framework that \textbf{B}ridges the s\textbf{E}mantic gap for long-tail \textbf{QUE}ries. \method comprises three stages: multi-instruction supervised fine tuning (SFT), offline feedback, and objective alignment. Specifically, we first construct a rewriting dataset based on rejection sampling, and mix it with multiple auxiliary tasks data to fine tune our large language model (LLM) in a supervised fashion during the first stage. Subsequently, with the well-trained LLM, we employ beam search to generate multiple candidate rewrites, which would be fed into Taobao offline system to simulate the retrieval process and obtain the partial order. Leveraging the partial order of candidate rewrites, we introduce a contrastive learning method to highlight the distinctions between rewrites and align the model with the Taobao online objectives. Offline experiments prove the effectiveness of our method in enhancing retrieval performance. Online A/B tests reveal that our method can significantly boost gross merchandise volume (GMV), number of transaction (\#Trans) and unique visitor (UV) for long-tail queries. \method has been deployed on Taobao, one of most popular online shopping platforms in China, since October 2023.

Conventional wheeled robots are unable to traverse scientifically interesting, but dangerous, cave environments. Multi-limbed climbing robot designs, such as ReachBot, are able to grasp irregular surface features and execute climbing motions to overcome obstacles, given suitable grasp locations. To support grasp site identification, we present a method for detecting rock cracks and edges, the SKeleton Intersection Loss (SKIL). SKIL is a loss designed for thin object segmentation that leverages the skeleton of the label. A dataset of rock face images was collected, manually annotated, and augmented with generated data. A new group of metrics, LineAcc, has been proposed for thin object segmentation such that the impact of the object width on the score is minimized. In addition, the metric is less sensitive to translation which can often lead to a score of zero when computing classical metrics such as Dice on thin objects. Our fine-tuned models outperform previous methods on similar thin object segmentation tasks such as blood vessel segmentation and show promise for integration onto a robotic system.

We propose a data-driven approach to explicitly learn the progressive encoding of a continuous source, which is successively decoded with increasing levels of quality and with the aid of correlated side information. This setup refers to the successive refinement of the Wyner-Ziv coding problem. Assuming ideal Slepian-Wolf coding, our approach employs recurrent neural networks (RNNs) to learn layered encoders and decoders for the quadratic Gaussian case. The models are trained by minimizing a variational bound on the rate-distortion function of the successively refined Wyner-Ziv coding problem. We demonstrate that RNNs can explicitly retrieve layered binning solutions akin to scalable nested quantization. Moreover, the rate-distortion performance of the scheme is on par with the corresponding monolithic Wyner-Ziv coding approach and is close to the rate-distortion bound.

Vision Transformers (ViTs) have revolutionized the field of computer vision, yet their deployments on resource-constrained devices remain challenging due to high computational demands. To expedite pre-trained ViTs, token pruning and token merging approaches have been developed, which aim at reducing the number of tokens involved in the computation. However, these methods still have some limitations, such as image information loss from pruned tokens and inefficiency in the token-matching process. In this paper, we introduce a novel Graph-based Token Propagation (GTP) method to resolve the challenge of balancing model efficiency and information preservation for efficient ViTs. Inspired by graph summarization algorithms, GTP meticulously propagates less significant tokens' information to spatially and semantically connected tokens that are of greater importance. Consequently, the remaining few tokens serve as a summarization of the entire token graph, allowing the method to reduce computational complexity while preserving essential information of eliminated tokens. Combined with an innovative token selection strategy, GTP can efficiently identify image tokens to be propagated. Extensive experiments have validated GTP's effectiveness, demonstrating both efficiency and performance improvements. Specifically, GTP decreases the computational complexity of both DeiT-S and DeiT-B by up to 26% with only a minimal 0.3% accuracy drop on ImageNet-1K without finetuning, and remarkably surpasses the state-of-the-art token merging method on various backbones at an even faster inference speed. The source code is available at //github.com/Ackesnal/GTP-ViT.

As a dedicated quantum device, Ising machines could solve large-scale binary optimization problems in milliseconds. There is emerging interest in utilizing Ising machines to train feedforward neural networks due to the prosperity of generative artificial intelligence. However, existing methods can only train single-layer feedforward networks because of the complex nonlinear network topology. This paper proposes an Ising learning algorithm to train quantized neural network (QNN), by incorporating two essential techinques, namely binary representation of topological network and order reduction of loss function. As far as we know, this is the first algorithm to train multi-layer feedforward networks on Ising machines, providing an alternative to gradient-based backpropagation. Firstly, training QNN is formulated as a quadratic constrained binary optimization (QCBO) problem by representing neuron connection and activation function as equality constraints. All quantized variables are encoded by binary bits based on binary encoding protocol. Secondly, QCBO is converted to a quadratic unconstrained binary optimization (QUBO) problem, that can be efficiently solved on Ising machines. The conversion leverages both penalty function and Rosenberg order reduction, who together eliminate equality constraints and reduce high-order loss function into a quadratic one. With some assumptions, theoretical analysis shows the space complexity of our algorithm is $\mathcal{O}(H^2L + HLN\log H)$, quantifying the required number of Ising spins. Finally, the algorithm effectiveness is validated with a simulated Ising machine on MNIST dataset. After annealing 700 ms, the classification accuracy achieves 98.3%. Among 100 runs, the success probability of finding the optimal solution is 72%. Along with the increasing number of spins on Ising machine, our algorithm has the potential to train deeper neural networks.

Several physics and engineering applications involve the solution of a minimisation problem to compute an approximation of the input signal. Modern computing hardware and software apply high-performance computing to solve and considerably reduce the execution time. We compare and analyse different minimisation methods in terms of functional computation, convergence, execution time, and scalability properties, for the solution of two minimisation problems (i.e., approximation and denoising) with different constraints that involve computationally expensive operations. These problems are attractive due to their numerical and analytical properties, and our general analysis can be extended to most signal-processing problems. We perform our tests on the Cineca Marconi100 cluster, at the 26th position in the top500 list. Our experimental results show that PRAXIS is the best optimiser in terms of minima computation: the efficiency of the approximation is 38% with 256 processes, while the denoising has 46% with 32 processes.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司