亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cellular reprogramming can be used for both the prevention and cure of different diseases. However, the efficiency of discovering reprogramming strategies with classical wet-lab experiments is hindered by lengthy time commitments and high costs. In this study, we develop a~novel computational framework based on deep reinforcement learning that facilitates the identification of reprogramming strategies. For this aim, we formulate a~control problem in the context of cellular reprogramming for the frameworks of BNs and PBNs under the asynchronous update mode. Furthermore, we introduce the notion of a~pseudo-attractor and a~procedure for identification of pseudo-attractor state during training. Finally, we devise a~computational framework for solving the control problem, which we test on a~number of different models.

相關內容

Spiking neural networks (SNNs), inspired by the neural circuits of the brain, are promising in achieving high computational efficiency with biological fidelity. Nevertheless, it is quite difficult to optimize SNNs because the functional roles of their modelling components remain unclear. By designing and evaluating several variants of the classic model, we systematically investigate the functional roles of key modelling components, leakage, reset, and recurrence, in leaky integrate-and-fire (LIF) based SNNs. Through extensive experiments, we demonstrate how these components influence the accuracy, generalization, and robustness of SNNs. Specifically, we find that the leakage plays a crucial role in balancing memory retention and robustness, the reset mechanism is essential for uninterrupted temporal processing and computational efficiency, and the recurrence enriches the capability to model complex dynamics at a cost of robustness degradation. With these interesting observations, we provide optimization suggestions for enhancing the performance of SNNs in different scenarios. This work deepens the understanding of how SNNs work, which offers valuable guidance for the development of more effective and robust neuromorphic models.

This study is about the implementation of a reinforcement learning algorithm in the trajectory planning of manipulators. We have a 7-DOF robotic arm to pick and place the randomly placed block at a random target point in an unknown environment. The obstacle is randomly moving which creates a hurdle in picking the object. The objective of the robot is to avoid the obstacle and pick the block with constraints to a fixed timestamp. In this literature, we have applied a deep deterministic policy gradient (DDPG) algorithm and compared the model's efficiency with dense and sparse rewards.

Referents are often used to enhance scale perception in immersive visualizations. Common referent designs include the considerations of referent layout (side-by-side vs. in-situ) and referent size (small vs. medium vs. large). This paper introduces a controlled user study to assess how different referent designs affect the efficiency and accuracy of scale perception across different data scales, on the performance of the size-matching task in the virtual environment. Our results reveal that in-situ layouts significantly enhance accuracy and confidence across various data scales, particularly with large referents. Linear regression analyses further confirm that in-situ layouts exhibit greater resilience to changes in data scale. For tasks requiring efficiency, medium-sized referents emerge as the preferred choice. Based on these findings, we offer design guidelines for selecting referent layouts and sizes in immersive visualizations.

Models for the dynamics of congestion control generally involve systems of coupled differential equations. Universally, these models assume that traffic sources saturate the maximum transmissions allowed by the congestion control method. This is not suitable for studying congestion control of intermittent but bursty traffic sources. In this paper, we present a characterization of congestion control for arbitrary time-varying traffic that applies to rate-based as well as window-based congestion control. We leverage the capability of network calculus to precisely describe the input-output relationship at network elements for arbitrary source traffic. We show that our characterization can closely track the dynamics of even complex congestion control algorithms.

The distribution of objective vectors in a Pareto Front Approximation (PFA) is crucial for representing the associated manifold accurately. Distribution Indicators (DIs) assess the distribution of a PFA numerically, utilizing concepts like distance calculation, Biodiversity, Entropy, Potential Energy, or Clustering. Despite the diversity of DIs, their strengths and weaknesses across assessment scenarios are not well-understood. This paper introduces a taxonomy for classifying DIs, followed by a preference analysis of nine DIs, each representing a category in the taxonomy. Experimental results, considering various PFAs under controlled scenarios (loss of coverage, loss of uniformity, pathological distributions), reveal that some DIs can be misleading and need cautious use. Additionally, DIs based on Biodiversity and Potential Energy show promise for PFA evaluation and comparison of Multi-Objective Evolutionary Algorithms.

This work discusses the benefits of having multiple simulated environments with different degrees of realism for the development of algorithms in scenarios populated by autonomous nodes capable of communication and mobility. This approach aids the development experience and generates robust algorithms. It also proposes GrADyS-SIM NextGen as a solution that enables development on a single programming language and toolset over multiple environments with varying levels of realism. Finally, we illustrate the usefulness of this approach with a toy problem that makes use of the simulation framework, taking advantage of the proposed environments to iteratively develop a robust solution.

Arrangements of pseudolines are classic objects in discrete and computational geometry. They have been studied with increasing intensity since their introduction almost 100 years ago. The study of the number $B_n$ of non-isomorphic simple arrangements of $n$ pseudolines goes back to Goodman and Pollack, Knuth, and others. It is known that $B_n$ is in the order of $2^{\Theta(n^2)}$ and finding asymptotic bounds on $b_n = \frac{\log_2(B_n)}{n^2}$ remains a challenging task. In 2011, Felsner and Valtr showed that $0.1887 \leq b_n \le 0.6571$ for sufficiently large $n$. The upper bound remains untouched but in 2020 Dumitrescu and Mandal improved the lower bound constant to $0.2083$. Their approach utilizes the known values of $B_n$ for up to $n=12$. We tackle the lower bound by utilizing dynamic programming and the Lindstr\"om-Gessel-Viennot lemma. Our new bound is $b_n \geq 0.2721$ for sufficiently large $n$. The result is based on a delicate interplay of theoretical ideas and computer assistance.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司