亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The backpropagation algorithm, despite its widespread use in neural network learning, may not accurately emulate the human cortex's learning process. Alternative strategies, such as the Forward-Forward Algorithm (FFA), offer a closer match to the human cortex's learning characteristics. However, the original FFA paper and related works on the Forward-Forward Algorithm only mentioned very limited types of neural network mechanisms and may limit its application and effectiveness. In response to these challenges, we propose an integrated method that combines the strengths of both FFA and shallow backpropagation, yielding a biologically plausible neural network training algorithm which can also be applied to various network structures. We applied this integrated approach to the classification of the Modified National Institute of Standards and Technology (MNIST) database, where it outperformed FFA and demonstrated superior resilience to noise compared to backpropagation. We show that training neural networks with the Integrated Forward-Forward Algorithm has the potential of generating neural networks with advantageous features like robustness.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Training deep neural networks (DNNs) in low-dimensional subspaces is a promising direction for achieving efficient training and better generalization performance. Previous works extract the subspaces by using random projection or performing dimensionality reduction method on the training trajectory, but these methods can be inefficient or unstable in terms of dimensionality and numerical operations. In this paper, we connect subspace training to weight averaging and propose Trainable Weight Averaging (TWA), a general approach for subspace training that generalizes the previous efforts. TWA is efficient in terms of dimensionality and also easy to use, making it a promising new method for subspace training. We further design an efficient scheme for subspace training to cope with large-scale problems, which allows parallel training across multiple nodes and evenly distributing the memory and computation burden to each node. We apply TWA to efficient neural network training and improving fine-tuning performance tasks to demonstrate the great efficiency and effectiveness of our approach. We conduct extensive experiments that cover various benchmark computer vision and neural language processing tasks with various architectures. The code of implementation is available at //github.com/nblt/TWA.

Data reduction is a fundamental challenge of modern technology, where classical statistical methods are not applicable because of computational limitations. We consider linear regression for an extraordinarily large number of observations, but only a few covariates. Subsampling aims at the selection of a given percentage of the existing original data. Under distributional assumptions on the covariates, we derive D-optimal subsampling designs and study their theoretical properties. We make use of fundamental concepts of optimal design theory and an equivalence theorem from constrained convex optimization. The thus obtained subsampling designs provide simple rules for whether to accept or reject a data point, allowing for an easy algorithmic implementation. In addition, we propose a simplified subsampling method that differs from the D-optimal design but requires lower computing time. We present a simulation study, comparing both subsampling schemes with the IBOSS method.

Representation learning has become a crucial area of research in machine learning, as it aims to discover efficient ways of representing raw data with useful features to increase the effectiveness, scope and applicability of downstream tasks such as classification and prediction. In this paper, we propose a novel method to generate representations for time series-type data. This method relies on ideas from theoretical physics to construct a compact representation in a data-driven way, and it can capture both the underlying structure of the data and task-specific information while still remaining intuitive, interpretable and verifiable. This novel methodology aims to identify linear laws that can effectively capture a shared characteristic among samples belonging to a specific class. By subsequently utilizing these laws to generate a classifier-agnostic representation in a forward manner, they become applicable in a generalized setting. We demonstrate the effectiveness of our approach on the task of ECG signal classification, achieving state-of-the-art performance.

Prior work shows that it is possible to expand pretrained Masked Language Models (MLMs) to new languages by learning a new set of embeddings, while keeping the transformer body frozen. Despite learning a small subset of parameters, this approach is not compute-efficient, as training the new embeddings requires a full forward and backward pass over the entire model. We propose mini-model adaptation, a compute-efficient alternative that builds a shallow mini-model from a fraction of a large model's parameters. New language-specific embeddings can then be efficiently trained over the mini-model and plugged into the aligned large model for rapid cross-lingual transfer. We explore two approaches to learn mini-models: MiniJoint, which jointly pretrains the primary model and the mini-model using a single transformer with a secondary MLM head at a middle layer; and MiniPost, where we start from a regular pretrained model, build a mini-model by extracting and freezing a few layers, and learn a small number of parameters on top. Experiments on XNLI, MLQA and PAWS-X show that mini-model adaptation matches the performance of the standard approach using 2.3x less compute on average.

Indoor localization plays a vital role in applications such as emergency response, warehouse management, and augmented reality experiences. By deploying machine learning (ML) based indoor localization frameworks on their mobile devices, users can localize themselves in a variety of indoor and subterranean environments. However, achieving accurate indoor localization can be challenging due to heterogeneity in the hardware and software stacks of mobile devices, which can result in inconsistent and inaccurate location estimates. Traditional ML models also heavily rely on initial training data, making them vulnerable to degradation in performance with dynamic changes across indoor environments. To address the challenges due to device heterogeneity and lack of adaptivity, we propose a novel embedded ML framework called FedHIL. Our framework combines indoor localization and federated learning (FL) to improve indoor localization accuracy in device-heterogeneous environments while also preserving user data privacy. FedHIL integrates a domain-specific selective weight adjustment approach to preserve the ML model's performance for indoor localization during FL, even in the presence of extremely noisy data. Experimental evaluations in diverse real-world indoor environments and with heterogeneous mobile devices show that FedHIL outperforms state-of-the-art FL and non-FL indoor localization frameworks. FedHIL is able to achieve 1.62x better localization accuracy on average than the best performing FL-based indoor localization framework from prior work.

Deep reinforcement learning (DRL) algorithms have proven effective in robot navigation, especially in unknown environments, by directly mapping perception inputs into robot control commands. However, most existing methods ignore the local minimum problem in navigation and thereby cannot handle complex unknown environments. In this paper, we propose the first DRL-based navigation method modeled by a semi-Markov decision process (SMDP) with continuous action space, named Adaptive Forward Simulation Time (AFST), to overcome this problem. Specifically, we reduce the dimensions of the action space and improve the distributed proximal policy optimization (DPPO) algorithm for the specified SMDP problem by modifying its GAE to better estimate the policy gradient in SMDPs. Experiments in various unknown environments demonstrate the effectiveness of AFST.

Even though data annotation is extremely important for interpretability, research and development of artificial intelligence solutions, most research efforts such as active learning or few-shot learning focus on the sample efficiency problem. This paper studies the neglected complementary problem of getting annotated data given a predictor. For the simple binary classification setting, we present the spectrum ranging from optimal general solutions to practical efficient methods. The problem is framed as the full annotation of a binary classification dataset with the minimal number of yes/no questions when a predictor is available. For the case of general binary questions the solution is found in coding theory, where the optimal questioning strategy is given by the Huffman encoding of the possible labelings. However, this approach is computationally intractable even for small dataset sizes. We propose an alternative practical solution based on several heuristics and lookahead minimization of proxy cost functions. The proposed solution is analysed, compared with optimal solutions and evaluated on several synthetic and real-world datasets. On these datasets, the method allows a significant improvement ($23-86\%$) in annotation efficiency.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司