We present a quite curious generalization of multi-step Fibonacci numbers. For any positive rational $q$, we enumerate binary words of length $n$ whose maximal factors of the form $0^a1^b$ satisfy $a = 0$ or $aq > b$. When $q$ is an integer we rediscover classical multi-step Fibonacci numbers: Fibonacci, Tribonacci, Tetranacci, etc. When $q$ is not an integer, obtained recurrence relations are connected to certain restricted integer compositions. We also discuss Gray codes for these words, and a possibly novel generalization of the golden ratio.
We study the problem of testing whether a function $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial of degree at most $d$ in the \emph{distribution-free} testing model. Here, the distance between functions is measured with respect to an unknown distribution $\mathcal{D}$ over $\mathbb{R}^n$ from which we can draw samples. In contrast to previous work, we do not assume that $\mathcal{D}$ has finite support. We design a tester that given query access to $f$, and sample access to $\mathcal{D}$, makes $(d/\varepsilon)^{O(1)}$ many queries to $f$, accepts with probability $1$ if $f$ is a polynomial of degree $d$, and rejects with probability at least $2/3$ if every degree-$d$ polynomial $P$ disagrees with $f$ on a set of mass at least $\varepsilon$ with respect to $\mathcal{D}$. Our result also holds under mild assumptions when we receive only a polynomial number of bits of precision for each query to $f$, or when $f$ can only be queried on rational points representable using a logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials that may be of independent interest.
Many existing algorithms for streaming geometric data analysis have been plagued by exponential dependencies in the space complexity, which are undesirable for processing high-dimensional data sets. In particular, once $d\geq\log n$, there are no known non-trivial streaming algorithms for problems such as maintaining convex hulls and L\"owner-John ellipsoids of $n$ points, despite a long line of work in streaming computational geometry since [AHV04]. We simultaneously improve these results to $\mathrm{poly}(d,\log n)$ bits of space by trading off with a $\mathrm{poly}(d,\log n)$ factor distortion. We achieve these results in a unified manner, by designing the first streaming algorithm for maintaining a coreset for $\ell_\infty$ subspace embeddings with $\mathrm{poly}(d,\log n)$ space and $\mathrm{poly}(d,\log n)$ distortion. Our algorithm also gives similar guarantees in the \emph{online coreset} model. Along the way, we sharpen results for online numerical linear algebra by replacing a log condition number dependence with a $\log n$ dependence, answering a question of [BDM+20]. Our techniques provide a novel connection between leverage scores, a fundamental object in numerical linear algebra, and computational geometry. For $\ell_p$ subspace embeddings, we give nearly optimal trade-offs between space and distortion for one-pass streaming algorithms. For instance, we give a deterministic coreset using $O(d^2\log n)$ space and $O((d\log n)^{1/2-1/p})$ distortion for $p>2$, whereas previous deterministic algorithms incurred a $\mathrm{poly}(n)$ factor in the space or the distortion [CDW18]. Our techniques have implications in the offline setting, where we give optimal trade-offs between the space complexity and distortion of subspace sketch data structures. To do this, we give an elementary proof of a "change of density" theorem of [LT80] and make it algorithmic.
In this short note, we show that for any $\epsilon >0$ and $k<n^{0.5-\epsilon}$ the choice number of the Kneser graph $KG_{n,k}$ is $\Theta (n\log n)$.
The Korkine--Zolotareff (KZ) reduction, and its generalisations, are widely used lattice reduction strategies in communications and cryptography. The KZ constant and Schnorr's constant were defined by Schnorr in 1987. The KZ constant can be used to quantify some useful properties of KZ reduced matrices. Schnorr's constant can be used to characterize the output quality of his block $2k$-reduction and is used to define his semi block $2k$-reduction, which was also developed in 1987. Hermite's constant, which is a fundamental constant lattices, has many applications, such as bounding the length of the shortest nonzero lattice vector and the orthogonality defect of lattices. Rankin's constant was introduced by Rankin in 1953 as a generalization of Hermite's constant. It plays an important role in characterizing the output quality of block-Rankin reduction, proposed by Gama et al. in 2006. In this paper, we first develop a linear upper bound on Hermite's constant and then use it to develop an upper bound on the KZ constant. These upper bounds are sharper than those obtained recently by the authors, and the ratio of the new linear upper bound to the nonlinear upper bound, developed by Blichfeldt in 1929, on Hermite's constant is asymptotically 1.0047. Furthermore, we develop lower and upper bounds on Schnorr's constant. The improvement to the lower bound over the sharpest existing one developed by Gama et al. is around 1.7 times asymptotically, and the improvement to the upper bound over the sharpest existing one which was also developed by Gama et al. is around 4 times asymptotically. Finally, we develop lower and upper bounds on Rankin's constant. The improvements of the bounds over the sharpest existing ones, also developed by Gama et al., are exponential in the parameter defining the constant.
We study dynamic algorithms for the problem of maximizing a monotone submodular function over a stream of $n$ insertions and deletions. We show that any algorithm that maintains a $(0.5+\epsilon)$-approximate solution under a cardinality constraint, for any constant $\epsilon>0$, must have an amortized query complexity that is $\mathit{polynomial}$ in $n$. Moreover, a linear amortized query complexity is needed in order to maintain a $0.584$-approximate solution. This is in sharp contrast with recent dynamic algorithms of [LMNF+20, Mon20] that achieve $(0.5-\epsilon)$-approximation with a $\mathsf{poly}\log(n)$ amortized query complexity. On the positive side, when the stream is insertion-only, we present efficient algorithms for the problem under a cardinality constraint and under a matroid constraint with approximation guarantee $1-1/e-\epsilon$ and amortized query complexities $\smash{O(\log (k/\epsilon)/\epsilon^2)}$ and $\smash{k^{\tilde{O}(1/\epsilon^2)}\log n}$, respectively, where $k$ denotes the cardinality parameter or the rank of the matroid.
This extensive revision of my paper "Description of an $O(\text{poly}(n))$ Algorithm for NP-Complete Combinatorial Problems" will dramatically simplify the content of the original paper by solving subset-sum instead of $3$-SAT. I will first define the "product-derivative" method which will be used to generate a system of equations for solving unknown polynomial coefficients. Then I will describe the "Dragonfly" algorithm usable to solve subset-sum in $O(n^{16}\log(n))$ which is itself composed of a set of symbolic algebra steps on monic polynomials to convert a subset, $S_T$, of a set of positive integers, $S$, with a given target sum, $T$ into a polynomial with roots corresponding to the elements of $S_T$.
Grammar-based compression is a loss-less data compression scheme that represents a given string $w$ by a context-free grammar that generates only $w$. While computing the smallest grammar which generates a given string $w$ is NP-hard in general, a number of polynomial-time grammar-based compressors which work well in practice have been proposed. RePair, proposed by Larsson and Moffat in 1999, is a grammar-based compressor which recursively replaces all possible occurrences of a most frequently occurring bigrams in the string. Since there can be multiple choices of the most frequent bigrams to replace, different implementations of RePair can result in different grammars. In this paper, we show that the smallest grammars generating the Fibonacci words $F_k$ can be completely characterized by RePair, where $F_k$ denotes the $k$-th Fibonacci word. Namely, all grammars for $F_k$ generated by any implementation of RePair are the smallest grammars for $F_k$, and no other grammars can be the smallest for $F_k$. To the best of our knowledge, Fibonacci words are the first non-trivial infinite family of strings for which RePair is optimal.
A string $w$ is called a minimal absent word (MAW) for another string $T$ if $w$ does not occur (as a substring) in $T$ and any proper substring of $w$ occurs in $T$. State-of-the-art data structures for reporting the set $\mathsf{MAW}(T)$ of MAWs from a given string $T$ of length $n$ require $O(n)$ space, can be built in $O(n)$ time, and can report all MAWs in $O(|\mathsf{MAW}(T)|)$ time upon a query. This paper initiates the problem of computing MAWs from a compressed representation of a string. In particular, we focus on the most basic compressed representation of a string, run-length encoding (RLE), which represents each maximal run of the same characters $a$ by $a^p$ where $p$ is the length of the run. Let $m$ be the RLE-size of string $T$. After categorizing the MAWs into five disjoint sets $\mathcal{M}_1$, $\mathcal{M}_2$, $\mathcal{M}_3$, $\mathcal{M}_4$, $\mathcal{M}_5$ using RLE, we present matching upper and lower bounds for the number of MAWs in $\mathcal{M}_i$ for $i = 1,2,4,5$ in terms of RLE-size $m$, except for $\mathcal{M}_3$ whose size is unbounded by $m$. We then present a compact $O(m)$-space data structure that can report all MAWs in optimal $O(|\mathsf{MAW}(T)|)$ time.
There are many important high dimensional function classes that have fast agnostic learning algorithms when strong assumptions on the distribution of examples can be made, such as Gaussianity or uniformity over the domain. But how can one be sufficiently confident that the data indeed satisfies the distributional assumption, so that one can trust in the output quality of the agnostic learning algorithm? We propose a model by which to systematically study the design of tester-learner pairs $(\mathcal{A},\mathcal{T})$, such that if the distribution on examples in the data passes the tester $\mathcal{T}$ then one can safely trust the output of the agnostic learner $\mathcal{A}$ on the data. To demonstrate the power of the model, we apply it to the classical problem of agnostically learning halfspaces under the standard Gaussian distribution and present a tester-learner pair with a combined run-time of $n^{\tilde{O}(1/\epsilon^4)}$. This qualitatively matches that of the best known ordinary agnostic learning algorithms for this task. In contrast, finite sample Gaussian distribution testers do not exist for the $L_1$ and EMD distance measures. A key step in the analysis is a novel characterization of concentration and anti-concentration properties of a distribution whose low-degree moments approximately match those of a Gaussian. We also use tools from polynomial approximation theory. In contrast, we show strong lower bounds on the combined run-times of tester-learner pairs for the problems of agnostically learning convex sets under the Gaussian distribution and for monotone Boolean functions under the uniform distribution over $\{0,1\}^n$. Through these lower bounds we exhibit natural problems where there is a dramatic gap between standard agnostic learning run-time and the run-time of the best tester-learner pair.
In the pooled data problem we are given a set of $n$ agents, each of which holds a hidden state bit, either $0$ or $1$. A querying procedure returns for a query set the sum of the states of the queried agents. The goal is to reconstruct the states using as few queries as possible. In this paper we consider two noise models for the pooled data problem. In the noisy channel model, the result for each agent flips with a certain probability. In the noisy query model, each query result is subject to random Gaussian noise. Our results are twofold. First, we present and analyze for both error models a simple and efficient distributed algorithm that reconstructs the initial states in a greedy fashion. Our novel analysis pins down the range of error probabilities and distributions for which our algorithm reconstructs the exact initial states with high probability. Secondly, we present simulation results of our algorithm and compare its performance with approximate message passing (AMP) algorithms that are conjectured to be optimal in a number of related problems.