Abstract reasoning, the ability to reason from the abstract essence of a problem, serves as a key to generalization in human reasoning. However, eliciting language models to perform reasoning with abstraction remains unexplored. This paper seeks to bridge this gap by introducing a novel structured reasoning format called Abstraction-of-Thought (AoT). The uniqueness of AoT lies in its explicit requirement for varying levels of abstraction within the reasoning process. This approach could elicit language models to first contemplate on the abstract level before incorporating concrete details, which is overlooked by the prevailing step-by-step Chain-of-Thought (CoT) method. To align models with the AoT format, we present AoT Collection, a generic finetuning dataset consisting of 348k high-quality samples with AoT reasoning processes, collected via an automated and scalable pipeline. We finetune a wide range of language models with AoT Collection and conduct extensive evaluations on 23 unseen tasks from the challenging benchmark Big-Bench Hard. Experimental results indicate that models aligned to AoT reasoning format substantially outperform those aligned to CoT in many reasoning tasks.
Recent research endeavours have theoretically shown the beneficial effect of cooperation in multi-agent reinforcement learning (MARL). In a setting involving $N$ agents, this beneficial effect usually comes in the form of an $N$-fold linear convergence speedup, i.e., a reduction - proportional to $N$ - in the number of iterations required to reach a certain convergence precision. In this paper, we show for the first time that this speedup property also holds for a MARL framework subject to asynchronous delays in the local agents' updates. In particular, we consider a policy evaluation problem in which multiple agents cooperate to evaluate a common policy by communicating with a central aggregator. In this setting, we study the finite-time convergence of \texttt{AsyncMATD}, an asynchronous multi-agent temporal difference (TD) learning algorithm in which agents' local TD update directions are subject to asynchronous bounded delays. Our main contribution is providing a finite-time analysis of \texttt{AsyncMATD}, for which we establish a linear convergence speedup while highlighting the effect of time-varying asynchronous delays on the resulting convergence rate.
The ROUGE metric is commonly used to evaluate extractive summarization task, but it has been criticized for its lack of semantic awareness and its ignorance about the ranking quality of the extractive summarizer. Previous research has introduced a gain-based automated metric called Sem-nCG that addresses these issues, as it is both rank and semantic aware. However, it does not consider the amount of redundancy present in a model summary and currently does not support evaluation with multiple reference summaries. It is essential to have a model summary that balances importance and diversity, but finding a metric that captures both of these aspects is challenging. In this paper, we propose a redundancy-aware Sem-nCG metric and demonstrate how the revised Sem-nCG metric can be used to evaluate model summaries against multiple references as well which was missing in previous research. Experimental results demonstrate that the revised Sem-nCG metric has a stronger correlation with human judgments compared to the previous Sem-nCG metric and traditional ROUGE and BERTScore metric for both single and multiple reference scenarios.
Adversarial robustness has been conventionally believed as a challenging property to encode for neural networks, requiring plenty of training data. In the recent paradigm of adopting off-the-shelf models, however, access to their training data is often infeasible or not practical, while most of such models are not originally trained concerning adversarial robustness. In this paper, we develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data. Our intuition is to view recent text-to-image diffusion models as "adaptable" denoisers that can be optimized to specify target tasks. Based on this, we propose: (a) to initiate a denoise-and-classify pipeline that offers provable guarantees against adversarial attacks, and (b) to leverage a few synthetic reference images generated from the text-to-image model that enables novel adaptation schemes. Our experiments show that our data-free scheme applied to the pre-trained CLIP could improve the (provable) adversarial robustness of its diverse zero-shot classification derivatives (while maintaining their accuracy), significantly surpassing prior approaches that utilize the full training data. Not only for CLIP, we also demonstrate that our framework is easily applicable for robustifying other visual classifiers efficiently.
Detecting the anomaly of human behavior is paramount to timely recognizing endangering situations, such as street fights or elderly falls. However, anomaly detection is complex since anomalous events are rare and because it is an open set recognition task, i.e., what is anomalous at inference has not been observed at training. We propose COSKAD, a novel model that encodes skeletal human motion by a graph convolutional network and learns to COntract SKeletal kinematic embeddings onto a latent hypersphere of minimum volume for Video Anomaly Detection. We propose three latent spaces: the commonly-adopted Euclidean and the novel spherical and hyperbolic. All variants outperform the state-of-the-art on the most recent UBnormal dataset, for which we contribute a human-related version with annotated skeletons. COSKAD sets a new state-of-the-art on the human-related versions of ShanghaiTech Campus and CUHK Avenue, with performance comparable to video-based methods. Source code and dataset will be released upon acceptance.
Large pretrained self-attention neural networks, or transformers, have been very successful in various tasks recently. The performance of a model on a given task depends on its ability to memorize and generalize the training data. Large transformer models, which may have billions of parameters, in theory have a huge capacity to memorize content. However, the current algorithms for the optimization fall short of the theoretical capacity, and the capacity is also highly dependent on the content. In this paper, we focus on the memory capacity of these models obtained using common training algorithms and synthetic training data. Based on the results, we derive an empirical capacity model (ECM) for a generic transformer. The ECM can be used to design task-specific transformer models with an optimal number of parameters in cases where the target memorization capability of the task can be defined.
Hand gesture recognition allows humans to interact with machines non-verbally, which has a huge application in underwater exploration using autonomous underwater vehicles. Recently, a new gesture-based language called CADDIAN has been devised for divers, and supervised learning methods have been applied to recognize the gestures with high accuracy. However, such methods fail when they encounter unseen gestures in real time. In this work, we advocate the need for zero-shot underwater gesture recognition (ZSUGR), where the objective is to train a model with visual samples of gestures from a few ``seen'' classes only and transfer the gained knowledge at test time to recognize semantically-similar unseen gesture classes as well. After discussing the problem and dataset-specific challenges, we propose new seen-unseen splits for gesture classes in CADDY dataset. Then, we present a two-stage framework, where a novel transformer learns strong visual gesture cues and feeds them to a conditional generative adversarial network that learns to mimic feature distribution. We use the trained generator as a feature synthesizer for unseen classes, enabling zero-shot learning. Extensive experiments demonstrate that our method outperforms the existing zero-shot techniques. We conclude by providing useful insights into our framework and suggesting directions for future research.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.