亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Voice assistants (VAs) like Siri and Alexa are transforming human-computer interaction; however, they lack awareness of users' spatiotemporal context, resulting in limited performance and unnatural dialogue. We introduce GazePointAR, a fully-functional context-aware VA for wearable augmented reality that leverages eye gaze, pointing gestures, and conversation history to disambiguate speech queries. With GazePointAR, users can ask "what's over there?" or "how do I solve this math problem?" simply by looking and/or pointing. We evaluated GazePointAR in a three-part lab study (N=12): (1) comparing GazePointAR to two commercial systems; (2) examining GazePointAR's pronoun disambiguation across three tasks; (3) and an open-ended phase where participants could suggest and try their own context-sensitive queries. Participants appreciated the naturalness and human-like nature of pronoun-driven queries, although sometimes pronoun use was counter-intuitive. We then iterated on GazePointAR and conducted a first-person diary study examining how GazePointAR performs in-the-wild. We conclude by enumerating limitations and design considerations for future context-aware VAs.

相關內容

可穿戴設備即直接穿在身上,或是整合到用戶的衣服或配件的一種便攜式設備。可穿戴設備不僅僅是一種硬件設備,更是通過軟件支持以及數據交互、云端交互來實現強大的功能,可穿戴設備將會對我們的生活、感知帶來很大的轉變。

Denoising diffusion probabilistic models (DDPMs) have achieved unprecedented success in computer vision. However, they remain underutilized in medical imaging, a field crucial for disease diagnosis and treatment planning. This is primarily due to the high computational cost associated with (1) the use of large number of time steps (e.g., 1,000) in diffusion processes and (2) the increased dimensionality of medical images, which are often 3D or 4D. Training a diffusion model on medical images typically takes days to weeks, while sampling each image volume takes minutes to hours. To address this challenge, we introduce Fast-DDPM, a simple yet effective approach capable of improving training speed, sampling speed, and generation quality simultaneously. Unlike DDPM, which trains the image denoiser across 1,000 time steps, Fast-DDPM trains and samples using only 10 time steps. The key to our method lies in aligning the training and sampling procedures to optimize time-step utilization. Specifically, we introduced two efficient noise schedulers with 10 time steps: one with uniform time step sampling and another with non-uniform sampling. We evaluated Fast-DDPM across three medical image-to-image generation tasks: multi-image super-resolution, image denoising, and image-to-image translation. Fast-DDPM outperformed DDPM and current state-of-the-art methods based on convolutional networks and generative adversarial networks in all tasks. Additionally, Fast-DDPM reduced the training time to 0.2x and the sampling time to 0.01x compared to DDPM. Our code is publicly available at: //github.com/mirthAI/Fast-DDPM.

Implicit Personalization (IP) is a phenomenon of language models inferring a user's background from the implicit cues in the input prompts and tailoring the response based on this inference. While previous work has touched upon various instances of this problem, there lacks a unified framework to study this behavior. This work systematically studies IP through a rigorous mathematical formulation, a multi-perspective moral reasoning framework, and a set of case studies. Our theoretical foundation for IP relies on a structural causal model and introduces a novel method, indirect intervention, to estimate the causal effect of a mediator variable that cannot be directly intervened upon. Beyond the technical approach, we also introduce a set of moral reasoning principles based on three schools of moral philosophy to study when IP may or may not be ethically appropriate. Equipped with both mathematical and ethical insights, we present three diverse case studies illustrating the varied nature of the IP problem and offer recommendations for future research. Our code and data are at //github.com/jiarui-liu/IP.

Large vision-language models (LVLMs) are ignorant of the up-to-date knowledge, such as LLaVA series, because they cannot be updated frequently due to the large amount of resources required, and therefore fail in many cases. For example, if a LVLM was released on January 2024, and it wouldn't know the detailed plot of the new movie Dune 2, which wasn't released until February 2024. To solve the problem, a promising solution is to provide LVLMs with up-to-date knowledge via internet search during inference, i.e., internet-augmented generation (IAG), which is already integrated in some closed-source commercial LVLMs such as GPT-4V. However, the specific mechanics underpinning them remain a mystery. In this paper, we propose a plug-and-play framework, for augmenting existing LVLMs in handling visual question answering (VQA) about up-to-date knowledge, dubbed UDKAG. A hierarchical filtering model is trained to effectively and efficiently find the most helpful content from the websites returned by a search engine to prompt LVLMs with up-to-date knowledge. To train the model and evaluate our framework's performance, we propose a pipeline to automatically generate news-related VQA samples to construct a dataset, dubbed UDK-VQA. A multi-model voting mechanism is introduced to label the usefulness of website/content for VQA samples to construct the training set. Experimental results demonstrate the effectiveness of our framework, outperforming GPT-4V by about 25% in accuracy.

A critical approach for efficiently deploying computationally demanding large language models (LLMs) is Key-Value (KV) caching. The KV cache stores key-value states of previously generated tokens, significantly reducing the need for repetitive computations and thereby lowering latency in autoregressive generation. However, the size of the KV cache grows linearly with sequence length, posing challenges for applications requiring long context input and extensive sequence generation. In this paper, we present a simple yet effective approach, called MiniCache, to compress the KV cache across layers from a novel depth perspective, significantly reducing the memory footprint for LLM inference. Our approach is based on the observation that KV cache states exhibit high similarity between the adjacent layers in the middle-to-deep portion of LLMs. To facilitate merging, we propose disentangling the states into the magnitude and direction components, interpolating the directions of the state vectors while preserving their lengths unchanged. Furthermore, we introduce a token retention strategy to keep highly distinct state pairs unmerged, thus preserving the information with minimal additional storage overhead. Our MiniCache is training-free and general, complementing existing KV cache compression strategies, such as quantization and sparsity. We conduct a comprehensive evaluation of MiniCache utilizing various models including LLaMA-2, LLaMA-3, Phi-3, Mistral, and Mixtral across multiple benchmarks, demonstrating its exceptional performance in achieving superior compression ratios and high throughput. On the ShareGPT dataset, LLaMA-2-7B with 4-bit MiniCache achieves a remarkable compression ratio of up to 5.02x, enhances inference throughput by approximately 5x, and reduces the memory footprint by 41% compared to the FP16 full cache baseline, all while maintaining near-lossless performance.

The integration of Machine Learning and Artificial Intelligence (ML/AI) into fifth-generation (5G) networks has made evident the limitations of network intelligence with ever-increasing, strenuous requirements for current and next-generation devices. This transition to ubiquitous intelligence demands high connectivity, synchronicity, and end-to-end communication between users and network operators, and will pave the way towards full network automation without human intervention. Intent-based networking is a key factor in the reduction of human actions, roles, and responsibilities while shifting towards novel extraction and interpretation of automated network management. This paper presents the development of a custom Large Language Model (LLM) for 5G and next-generation intent-based networking and provides insights into future LLM developments and integrations to realize end-to-end intent-based networking for fully automated network intelligence.

With the advent of Large Language Models (LLMs), the potential of Retrieval Augmented Generation (RAG) techniques have garnered considerable research attention. Numerous novel algorithms and models have been introduced to enhance various aspects of RAG systems. However, the absence of a standardized framework for implementation, coupled with the inherently intricate RAG process, makes it challenging and time-consuming for researchers to compare and evaluate these approaches in a consistent environment. Existing RAG toolkits like LangChain and LlamaIndex, while available, are often heavy and unwieldy, failing to meet the personalized needs of researchers. In response to this challenge, we propose FlashRAG, an efficient and modular open-source toolkit designed to assist researchers in reproducing existing RAG methods and in developing their own RAG algorithms within a unified framework. Our toolkit implements 12 advanced RAG methods and has gathered and organized 32 benchmark datasets. Our toolkit has various features, including customizable modular framework, rich collection of pre-implemented RAG works, comprehensive datasets, efficient auxiliary pre-processing scripts, and extensive and standard evaluation metrics. Our toolkit and resources are available at //github.com/RUC-NLPIR/FlashRAG.

We present BYOKG, a universal question-answering (QA) system that can operate on any knowledge graph (KG), requires no human-annotated training data, and can be ready to use within a day -- attributes that are out-of-scope for current KGQA systems. BYOKG draws inspiration from the remarkable ability of humans to comprehend information present in an unseen KG through exploration -- starting at random nodes, inspecting the labels of adjacent nodes and edges, and combining them with their prior world knowledge. In BYOKG, exploration leverages an LLM-backed symbolic agent that generates a diverse set of query-program exemplars, which are then used to ground a retrieval-augmented reasoning procedure to predict programs for arbitrary questions. BYOKG is effective over both small- and large-scale graphs, showing dramatic gains in QA accuracy over a zero-shot baseline of 27.89 and 58.02 F1 on GrailQA and MetaQA, respectively. On GrailQA, we further show that our unsupervised BYOKG outperforms a supervised in-context learning method, demonstrating the effectiveness of exploration. Lastly, we find that performance of BYOKG reliably improves with continued exploration as well as improvements in the base LLM, notably outperforming a state-of-the-art fine-tuned model by 7.08 F1 on a sub-sampled zero-shot split of GrailQA.

Federated self-supervised learning (FSSL) has recently emerged as a promising paradigm that enables the exploitation of clients' vast amounts of unlabeled data while preserving data privacy. While FSSL offers advantages, its susceptibility to backdoor attacks, a concern identified in traditional federated supervised learning (FSL), has not been investigated. To fill the research gap, we undertake a comprehensive investigation into a backdoor attack paradigm, where unscrupulous clients conspire to manipulate the global model, revealing the vulnerability of FSSL to such attacks. In FSL, backdoor attacks typically build a direct association between the backdoor trigger and the target label. In contrast, in FSSL, backdoor attacks aim to alter the global model's representation for images containing the attacker's specified trigger pattern in favor of the attacker's intended target class, which is less straightforward. In this sense, we demonstrate that existing defenses are insufficient to mitigate the investigated backdoor attacks in FSSL, thus finding an effective defense mechanism is urgent. To tackle this issue, we dive into the fundamental mechanism of backdoor attacks on FSSL, proposing the Embedding Inspector (EmInspector) that detects malicious clients by inspecting the embedding space of local models. In particular, EmInspector assesses the similarity of embeddings from different local models using a small set of inspection images (e.g., ten images of CIFAR100) without specific requirements on sample distribution or labels. We discover that embeddings from backdoored models tend to cluster together in the embedding space for a given inspection image. Evaluation results show that EmInspector can effectively mitigate backdoor attacks on FSSL across various adversary settings. Our code is avaliable at //github.com/ShuchiWu/EmInspector.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.

北京阿比特科技有限公司