We propose a new method for improving zero-shot ObjectNav that aims to utilize potentially available environmental percepts for navigational assistance. Our approach takes into account that the ground agent may have limited and sometimes obstructed view. Our formulation encourages Generative Communication (GC) between an assistive overhead agent with a global view containing the target object and the ground agent with an obfuscated view; both equipped with Vision-Language Models (VLMs) for vision-to-language translation. In this assisted setup, the embodied agents communicate environmental information before the ground agent executes actions towards a target. Despite the overhead agent having a global view with the target, we note a drop in performance (-13% in OSR and -13% in SPL) of a fully cooperative assistance scheme over an unassisted baseline. In contrast, a selective assistance scheme where the ground agent retains its independent exploratory behaviour shows a 10% OSR and 7.65% SPL improvement. To explain navigation performance, we analyze the GC for unique traits, quantifying the presence of hallucination and cooperation. Specifically, we identify the novel linguistic trait of preemptive hallucination in our embodied setting, where the overhead agent assumes that the ground agent has executed an action in the dialogue when it is yet to move, and note its strong correlation with navigation performance. We conduct real-world experiments and present some qualitative examples where we mitigate hallucinations via prompt finetuning to improve ObjectNav performance.
We propose a novel attention mechanism, named Cog Attention, that enables attention weights to be negative for enhanced expressiveness, which stems from two key factors: (1) Cog Attention can shift the token deletion and copying function from a static OV matrix to dynamic QK inner products, with the OV matrix now focusing more on refinement or modification. The attention head can simultaneously delete, copy, or retain tokens by assigning them negative, positive, or minimal attention weights, respectively. As a result, a single attention head becomes more flexible and expressive. (2) Cog Attention improves the model's robustness against representational collapse, which can occur when earlier tokens are over-squashed into later positions, leading to homogeneous representations. Negative weights reduce effective information paths from earlier to later tokens, helping to mitigate this issue. We develop Transformer-like models which use Cog Attention as attention modules, including decoder-only models for language modeling and U-ViT diffusion models for image generation. Experiments show that models using Cog Attention exhibit superior performance compared to those employing traditional softmax attention modules. Our approach suggests a promising research direction for rethinking and breaking the entrenched constraints of traditional softmax attention, such as the requirement for non-negative weights.
3D Gaussian Splats (3DGS) have proven a versatile rendering primitive, both for inverse rendering as well as real-time exploration of scenes. In these applications, coherence across camera frames and multiple views is crucial, be it for robust convergence of a scene reconstruction or for artifact-free fly-throughs. Recent work started mitigating artifacts that break multi-view coherence, including popping artifacts due to inconsistent transparency sorting and perspective-correct outlines of (2D) splats. At the same time, real-time requirements forced such implementations to accept compromises in how transparency of large assemblies of 3D Gaussians is resolved, in turn breaking coherence in other ways. In our work, we aim at achieving maximum coherence, by rendering fully perspective-correct 3D Gaussians while using a high-quality approximation of accurate blending, hybrid transparency, on a per-pixel level, in order to retain real-time frame rates. Our fast and perspectively accurate approach for evaluation of 3D Gaussians does not require matrix inversions, thereby ensuring numerical stability and eliminating the need for special handling of degenerate splats, and the hybrid transparency formulation for blending maintains similar quality as fully resolved per-pixel transparencies at a fraction of the rendering costs. We further show that each of these two components can be independently integrated into Gaussian splatting systems. In combination, they achieve up to 2$\times$ higher frame rates, 2$\times$ faster optimization, and equal or better image quality with fewer rendering artifacts compared to traditional 3DGS on common benchmarks.
Threat hunting analyzes large, noisy, high-dimensional data to find sparse adversarial behavior. We believe adversarial activities, however they are disguised, are extremely difficult to completely obscure in high dimensional space. In this paper, we employ these latent features of cyber data to find anomalies via a prototype tool called Cyber Log Embeddings Model (CLEM). CLEM was trained on Zeek network traffic logs from both a real-world production network and an from Internet of Things (IoT) cybersecurity testbed. The model is deliberately overtrained on a sliding window of data to characterize each window closely. We use the Adjusted Rand Index (ARI) to comparing the k-means clustering of CLEM output to expert labeling of the embeddings. Our approach demonstrates that there is promise in using natural language modeling to understand cyber data.
Markov chains are the de facto finite-state model for stochastic dynamical systems, and Markov decision processes (MDPs) extend Markov chains by incorporating non-deterministic behaviors. Given an MDP and rewards on states, a classical optimization criterion is the maximal expected total reward where the MDP stops after T steps, which can be computed by a simple dynamic programming algorithm. We consider a natural generalization of the problem where the stopping times can be chosen according to a probability distribution, such that the expected stopping time is T, to optimize the expected total reward. Quite surprisingly we establish inter-reducibility of the expected stopping-time problem for Markov chains with the Positivity problem (which is related to the well-known Skolem problem), for which establishing either decidability or undecidability would be a major breakthrough. Given the hardness of the exact problem, we consider the approximate version of the problem: we show that it can be solved in exponential time for Markov chains and in exponential space for MDPs.
We present Attend-Fusion, a novel and efficient approach for audio-visual fusion in video classification tasks. Our method addresses the challenge of exploiting both audio and visual modalities while maintaining a compact model architecture. Through extensive experiments on the YouTube-8M dataset, we demonstrate that our Attend-Fusion achieves competitive performance with significantly reduced model complexity compared to larger baseline models.
This paper presents the winning solution of task 1 and the third-placed solution of task 3 of the BraTS challenge. The use of automated tools in clinical practice has increased due to the development of more and more sophisticated and reliable algorithms. However, achieving clinical standards and developing tools for real-life scenarios is a major challenge. To this end, BraTS has organised tasks to find the most advanced solutions for specific purposes. In this paper, we propose the use of synthetic data to train state-of-the-art frameworks in order to improve the segmentation of adult gliomas in a post-treatment scenario, and the segmentation of meningioma for radiotherapy planning. Our results suggest that the use of synthetic data leads to more robust algorithms, although the synthetic data generation pipeline is not directly suited to the meningioma task. The code for these tasks is available at //github.com/ShadowTwin41/BraTS_2023_2024_solutions.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.
We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.