Wasserstein Gradient Flow (WGF) describes the gradient dynamics of probability density within the Wasserstein space. WGF provides a promising approach for conducting optimization over the probability distributions. Numerically approximating the continuous WGF requires the time discretization method. The most well-known method for this is the JKO scheme. In this regard, previous WGF models employ the JKO scheme and parametrize transport map for each JKO step. However, this approach results in quadratic training complexity $O(K^2)$ with the number of JKO step $K$. This severely limits the scalability of WGF models. In this paper, we introduce a scalable WGF-based generative model, called Semi-dual JKO (S-JKO). Our model is based on the semi-dual form of the JKO step, derived from the equivalence between the JKO step and the Unbalanced Optimal Transport. Our approach reduces the training complexity to $O(K)$. We demonstrate that our model significantly outperforms existing WGF-based generative models, achieving FID scores of 2.62 on CIFAR-10 and 6.19 on CelebA-HQ-256, which are comparable to state-of-the-art image generative models.
To visualize the regions of interest that classifiers base their decisions on, different Class Activation Mapping (CAM) methods have been developed. However, all of these techniques target categorical classifiers only, though most real-world tasks are binary classification. In this paper, we extend gradient-based CAM techniques to work with binary classifiers and visualize the active regions for binary facial attribute classifiers. When training an unbalanced binary classifier on an imbalanced dataset, it is well-known that the majority class, i.e. the class with many training samples, is mostly predicted much better than minority class with few training instances. In our experiments on the CelebA dataset, we verify these results, when training an unbalanced classifier to extract 40 facial attributes simultaneously. One would expect that the biased classifier has learned to extract features mainly for the majority classes and that the proportional energy of the activations mainly reside in certain specific regions of the image where the attribute is located. However, we find very little regular activation for samples of majority classes, while the active regions for minority classes seem mostly reasonable and overlap with our expectations. These results suggest that biased classifiers mainly rely on bias activation for majority classes. When training a balanced classifier on the imbalanced data by employing attribute-specific class weights, majority and minority classes are classified similarly well and show expected activations for almost all attributes
Machine Translation Quality Estimation (MTQE) is the task of estimating the quality of machine-translated text in real time without the need for reference translations, which is of great importance for the development of MT. After two decades of evolution, QE has yielded a wealth of results. This article provides a comprehensive overview of QE datasets, annotation methods, shared tasks, methodologies, challenges, and future research directions. It begins with an introduction to the background and significance of QE, followed by an explanation of the concepts and evaluation metrics for word-level QE, sentence-level QE, document-level QE, and explainable QE. The paper categorizes the methods developed throughout the history of QE into those based on handcrafted features, deep learning, and Large Language Models (LLMs), with a further division of deep learning-based methods into classic deep learning and those incorporating pre-trained language models (LMs). Additionally, the article details the advantages and limitations of each method and offers a straightforward comparison of different approaches. Finally, the paper discusses the current challenges in QE research and provides an outlook on future research directions.
Keyphrase extraction (KPE) is an important task in Natural Language Processing for many scenarios, which aims to extract keyphrases that are present in a given document. Many existing supervised methods treat KPE as sequential labeling, span-level classification, or generative tasks. However, these methods lack the ability to utilize keyphrase information, which may result in biased results. In this study, we propose Diff-KPE, which leverages the supervised Variational Information Bottleneck (VIB) to guide the text diffusion process for generating enhanced keyphrase representations. Diff-KPE first generates the desired keyphrase embeddings conditioned on the entire document and then injects the generated keyphrase embeddings into each phrase representation. A ranking network and VIB are then optimized together with rank loss and classification loss, respectively. This design of Diff-KPE allows us to rank each candidate phrase by utilizing both the information of keyphrases and the document. Experiments show that Diff-KPE outperforms existing KPE methods on a large open domain keyphrase extraction benchmark, OpenKP, and a scientific domain dataset, KP20K.
Cross-modal retrieval (CMR) aims to establish interaction between different modalities, among which supervised CMR is emerging due to its flexibility in learning semantic category discrimination. Despite the remarkable performance of previous supervised CMR methods, much of their success can be attributed to the well-annotated data. However, even for unimodal data, precise annotation is expensive and time-consuming, and it becomes more challenging with the multimodal scenario. In practice, massive multimodal data are collected from the Internet with coarse annotation, which inevitably introduces noisy labels. Training with such misleading labels would bring two key challenges -- enforcing the multimodal samples to \emph{align incorrect semantics} and \emph{widen the heterogeneous gap}, resulting in poor retrieval performance. To tackle these challenges, this work proposes UOT-RCL, a Unified framework based on Optimal Transport (OT) for Robust Cross-modal Retrieval. First, we propose a semantic alignment based on partial OT to progressively correct the noisy labels, where a novel cross-modal consistent cost function is designed to blend different modalities and provide precise transport cost. Second, to narrow the discrepancy in multi-modal data, an OT-based relation alignment is proposed to infer the semantic-level cross-modal matching. Both of these two components leverage the inherent correlation among multi-modal data to facilitate effective cost function. The experiments on three widely-used cross-modal retrieval datasets demonstrate that our UOT-RCL surpasses the state-of-the-art approaches and significantly improves the robustness against noisy labels.
Neural Architecture Search is a costly practice. The fact that a search space can span a vast number of design choices with each architecture evaluation taking nontrivial overhead makes it hard for an algorithm to sufficiently explore candidate networks. In this paper, we propose AutoBuild, a scheme which learns to align the latent embeddings of operations and architecture modules with the ground-truth performance of the architectures they appear in. By doing so, AutoBuild is capable of assigning interpretable importance scores to architecture modules, such as individual operation features and larger macro operation sequences such that high-performance neural networks can be constructed without any need for search. Through experiments performed on state-of-the-art image classification, segmentation, and Stable Diffusion models, we show that by mining a relatively small set of evaluated architectures, AutoBuild can learn to build high-quality architectures directly or help to reduce search space to focus on relevant areas, finding better architectures that outperform both the original labeled ones and ones found by search baselines. Code available at //github.com/Ascend-Research/AutoBuild
We combine the effectiveness of Reinforcement Learning (RL) and the efficiency of Imitation Learning (IL) in the context of vision-based, autonomous drone racing. We focus on directly processing visual input without explicit state estimation. While RL offers a general framework for learning complex controllers through trial and error, it faces challenges regarding sample efficiency and computational demands due to the high dimensionality of visual inputs. Conversely, IL demonstrates efficiency in learning from visual demonstrations but is limited by the quality of those demonstrations and faces issues like covariate shift. To overcome these limitations, we propose a novel training framework combining RL and IL's advantages. Our framework involves three stages: initial training of a teacher policy using privileged state information, distilling this policy into a student policy using IL, and performance-constrained adaptive RL fine-tuning. Our experiments in both simulated and real-world environments demonstrate that our approach achieves superior performance and robustness than IL or RL alone in navigating a quadrotor through a racing course using only visual information without explicit state estimation.
This study tackles the efficient estimation of Kullback-Leibler (KL) Divergence in Dirichlet Mixture Models (DMM), crucial for clustering compositional data. Despite the significance of DMMs, obtaining an analytically tractable solution for KL Divergence has proven elusive. Past approaches relied on computationally demanding Monte Carlo methods, motivating our introduction of a novel variational approach. Our method offers a closed-form solution, significantly enhancing computational efficiency for swift model comparisons and robust estimation evaluations. Validation using real and simulated data showcases its superior efficiency and accuracy over traditional Monte Carlo-based methods, opening new avenues for rapid exploration of diverse DMM models and advancing statistical analyses of compositional data.
When learning tasks over time, artificial neural networks suffer from a problem known as Catastrophic Forgetting (CF). This happens when the weights of a network are overwritten during the training of a new task causing forgetting of old information. To address this issue, we propose MetA Reusable Knowledge or MARK, a new method that fosters weight reusability instead of overwriting when learning a new task. Specifically, MARK keeps a set of shared weights among tasks. We envision these shared weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but also enriched with new knowledge as the model learns new tasks. Key components behind MARK are two-fold. On the one hand, a metalearning approach provides the key mechanism to incrementally enrich the KB with new knowledge and to foster weight reusability among tasks. On the other hand, a set of trainable masks provides the key mechanism to selectively choose from the KB relevant weights to solve each task. By using MARK, we achieve state of the art results in several popular benchmarks, surpassing the best performing methods in terms of average accuracy by over 10% on the 20-Split-MiniImageNet dataset, while achieving almost zero forgetfulness using 55% of the number of parameters. Furthermore, an ablation study provides evidence that, indeed, MARK is learning reusable knowledge that is selectively used by each task.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.