亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Malware detection is an important topic of current cybersecurity, and Machine Learning appears to be one of the main considered solutions even if certain problems to generalize to new malware remain. In the aim of exploring the potential of quantum machine learning on this domain, our previous work showed that quantum neural networks do not perform well on image-based malware detection when using a few qubits. In order to enhance the performances of our quantum algorithms for malware detection using images, without increasing the resources needed in terms of qubits, we implement a new preprocessing of our dataset using Grayscale method, and we couple it with a model composed of five distributed quantum convolutional networks and a scoring function. We get an increase of around 20 \% of our results, both on the accuracy of the test and its F1-score.

相關內容

We propose a new loss function for supervised and physics-informed training of neural networks and operators that incorporates a posteriori error estimate. More specifically, during the training stage, the neural network learns additional physical fields that lead to rigorous error majorants after a computationally cheap postprocessing stage. Theoretical results are based upon the theory of functional a posteriori error estimates, which allows for the systematic construction of such loss functions for a diverse class of practically relevant partial differential equations. From the numerical side, we demonstrate on a series of elliptic problems that for a variety of architectures and approaches (physics-informed neural networks, physics-informed neural operators, neural operators, and classical architectures in the regression and physics-informed settings), we can reach better or comparable accuracy and in addition to that cheaply recover high-quality upper bounds on the error after training.

We propose a diffusion approximation method to the continuous-state Markov Decision Processes (MDPs) that can be utilized to address autonomous navigation and control in unstructured off-road environments. In contrast to most decision-theoretic planning frameworks that assume fully known state transition models, we design a method that eliminates such a strong assumption that is often extremely difficult to engineer in reality. We first take the second-order Taylor expansion of the value function. The Bellman optimality equation is then approximated by a partial differential equation, which only relies on the first and second moments of the transition model. By combining the kernel representation of the value function, we design an efficient policy iteration algorithm whose policy evaluation step can be represented as a linear system of equations characterized by a finite set of supporting states. We first validate the proposed method through extensive simulations in 2D obstacle avoidance and 2.5D terrain navigation problems. The results show that the proposed approach leads to a much superior performance over several baselines. We then develop a system that integrates our decision-making framework with onboard perception and conduct real-world experiments in both cluttered indoor and unstructured outdoor environments. The results from the physical systems further demonstrate the applicability of our method in challenging real-world environments.

We introduce a method to construct a stochastic surrogate model from the results of dimensionality reduction in forward uncertainty quantification. The hypothesis is that the high-dimensional input augmented by the output of a computational model admits a low-dimensional representation. This assumption can be met by numerous uncertainty quantification applications with physics-based computational models. The proposed approach differs from a sequential application of dimensionality reduction followed by surrogate modeling, as we "extract" a surrogate model from the results of dimensionality reduction in the input-output space. This feature becomes desirable when the input space is genuinely high-dimensional. The proposed method also diverges from the Probabilistic Learning on Manifold, as a reconstruction mapping from the feature space to the input-output space is circumvented. The final product of the proposed method is a stochastic simulator that propagates a deterministic input into a stochastic output, preserving the convenience of a sequential "dimensionality reduction + Gaussian process regression" approach while overcoming some of its limitations. The proposed method is demonstrated through two uncertainty quantification problems characterized by high-dimensional input uncertainties.

Users want to know the reliability of the recommendations; they do not accept high predictions if there is no reliability evidence. Recommender systems should provide reliability values associated with the predictions. Research into reliability measures requires the existence of simple, plausible and universal reliability quality measures. Research into recommender system quality measures has focused on accuracy. Moreover, novelty, serendipity and diversity have been studied; nevertheless there is an important lack of research into reliability/confidence quality measures. This paper proposes a reliability quality prediction measure (RPI) and a reliability quality recommendation measure (RRI). Both quality measures are based on the hypothesis that the more suitable a reliability measure is, the better accuracy results it will provide when applied. These reliability quality measures show accuracy improvements when appropriated reliability values are associated with their predictions (i.e. high reliability values associated with correct predictions or low reliability values associated with incorrect predictions). The proposed reliability quality metrics will lead to the design of brand new recommender system reliability measures. These measures could be applied to different matrix factorization techniques and to content-based, context-aware and social recommendation approaches. The recommender system reliability measures designed could be tested, compared and improved using the proposed reliability quality metrics.

We consider nonparametric Bayesian inference in a multidimensional diffusion model with reflecting boundary conditions based on discrete high-frequency observations. We prove a general posterior contraction rate theorem in $L^2$-loss, which is applied to Gaussian priors. The resulting posteriors, as well as their posterior means, are shown to converge to the ground truth at the minimax optimal rate over H\"older smoothness classes in any dimension. Of independent interest and as part of our proofs, we show that certain frequentist penalized least squares estimators are also minimax optimal.

Neural ordinary differential equations (neural ODEs) have emerged as a natural tool for supervised learning from a control perspective, yet a complete understanding of their optimal architecture remains elusive. In this work, we examine the interplay between their width $p$ and number of layer transitions $L$ (effectively the depth $L+1$). Specifically, we assess the model expressivity in terms of its capacity to interpolate either a finite dataset $D$ comprising $N$ pairs of points or two probability measures in $\mathbb{R}^d$ within a Wasserstein error margin $\varepsilon>0$. Our findings reveal a balancing trade-off between $p$ and $L$, with $L$ scaling as $O(1+N/p)$ for dataset interpolation, and $L=O\left(1+(p\varepsilon^d)^{-1}\right)$ for measure interpolation. In the autonomous case, where $L=0$, a separate study is required, which we undertake focusing on dataset interpolation. We address the relaxed problem of $\varepsilon$-approximate controllability and establish an error decay of $\varepsilon\sim O(\log(p)p^{-1/d})$. This decay rate is a consequence of applying a universal approximation theorem to a custom-built Lipschitz vector field that interpolates $D$. In the high-dimensional setting, we further demonstrate that $p=O(N)$ neurons are likely sufficient to achieve exact control.

We consider the estimation of the cumulative hazard function, and equivalently the distribution function, with censored data under a setup that preserves the privacy of the survival database. This is done through a $\alpha$-locally differentially private mechanism for the failure indicators and by proposing a non-parametric kernel estimator for the cumulative hazard function that remains consistent under the privatization. Under mild conditions, we also prove lowers bounds for the minimax rates of convergence and show that estimator is minimax optimal under a well-chosen bandwidth.

Data assimilation is a method of uncertainty quantification to estimate the hidden true state by updating the prediction owing to model dynamics with observation data. As a prediction model, we consider a class of nonlinear dynamical systems on Hilbert spaces including the two-dimensional Navier-Stokes equations and the Lorenz '63 and '96 equations. For nonlinear model dynamics, the ensemble Kalman filter (EnKF) is often used to approximate the mean and covariance of the probability distribution with a set of particles called an ensemble. In this paper, we consider a deterministic version of the EnKF known as the ensemble transform Kalman filter (ETKF), performing well even with limited ensemble sizes in comparison to other stochastic implementations of the EnKF. When the ETKF is applied to large-scale systems, an ad-hoc numerical technique called a covariance inflation is often employed to reduce approximation errors. Despite the practical effectiveness of the ETKF, little is theoretically known. The present study aims to establish the theoretical analysis of the ETKF. We obtain that the estimation error of the ETKF with and without the covariance inflation is bounded for any finite time. In particular, the uniform-in-time error bound is obtained when an inflation parameter is chosen appropriately, justifying the effectiveness of the covariance inflation in the ETKF.

Speech intelligibility can be degraded due to multiple factors, such as noisy environments, technical difficulties or biological conditions. This work is focused on the development of an automatic non-intrusive system for predicting the speech intelligibility level in this latter case. The main contribution of our research on this topic is the use of Long Short-Term Memory (LSTM) networks with log-mel spectrograms as input features for this purpose. In addition, this LSTM-based system is further enhanced by the incorporation of a simple attention mechanism that is able to determine the more relevant frames to this task. The proposed models are evaluated with the UA-Speech database that contains dysarthric speech with different degrees of severity. Results show that the attention LSTM architecture outperforms both, a reference Support Vector Machine (SVM)-based system with hand-crafted features and a LSTM-based system with Mean-Pooling.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

北京阿比特科技有限公司