亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a framework for an indoor autonomous mobility system that can perform patient transfers and materials handling. Unlike traditional systems that rely on onboard perception sensors, the proposed approach leverages a global perception and localization (PL) through Infrastructure Sensor Nodes (ISNs) and cloud computing technology. Using the global PL, an integrated Model Predictive Control (MPC)-based local planning and tracking controller augmented with Artificial Potential Field (APF) is developed, enabling reliable and efficient motion planning and obstacle avoidance ability while tracking predefined reference motions. Simulation results demonstrate the effectiveness of the proposed MPC controller in smoothly navigating around both static and dynamic obstacles. The proposed system has the potential to extend to intelligent connected autonomous vehicles, such as electric or cargo transport vehicles with four-wheel independent drive/steering (4WID-4WIS) configurations.

相關內容

Learning-based methods provide a promising approach to solving highly non-linear control tasks that are often challenging for classical control methods. To ensure the satisfaction of a safety property, learning-based methods jointly learn a control policy together with a certificate function for the property. Popular examples include barrier functions for safety and Lyapunov functions for asymptotic stability. While there has been significant progress on learning-based control with certificate functions in the white-box setting, where the correctness of the certificate function can be formally verified, there has been little work on ensuring their reliability in the black-box setting where the system dynamics are unknown. In this work, we consider the problems of certifying and repairing neural network control policies and certificate functions in the black-box setting. We propose a novel framework that utilizes runtime monitoring to detect system behaviors that violate the property of interest under some initially trained neural network policy and certificate. These violating behaviors are used to extract new training data, that is used to re-train the neural network policy and the certificate function and to ultimately repair them. We demonstrate the effectiveness of our approach empirically by using it to repair and to boost the safety rate of neural network policies learned by a state-of-the-art method for learning-based control on two autonomous system control tasks.

Recent advancements in quantum computing (QC) and machine learning (ML) have garnered significant attention, leading to substantial efforts toward the development of quantum machine learning (QML) algorithms to address a variety of complex challenges. The design of high-performance QML models, however, requires expert-level knowledge, posing a significant barrier to the widespread adoption of QML. Key challenges include the design of data encoding mechanisms and parameterized quantum circuits, both of which critically impact the generalization capabilities of QML models. We propose a novel method that encodes quantum circuit architecture information to enable the evolution of quantum circuit designs. In this approach, the fitness function is based on the effective dimension, allowing for the optimization of quantum circuits towards higher model capacity. Through numerical simulations, we demonstrate that the proposed method is capable of discovering variational quantum circuit architectures that offer improved learning capabilities, thereby enhancing the overall performance of QML models for complex tasks.

Bipartite graphs are commonly used to model relationships between two distinct entities in real-world applications, such as user-product interactions, user-movie ratings and collaborations between authors and publications. A butterfly (a 2x2 bi-clique) is a critical substructure in bipartite graphs, playing a significant role in tasks like community detection, fraud detection, and link prediction. As more real-world data is presented in a streaming format, efficiently counting butterflies in streaming bipartite graphs has become increasingly important. However, most existing algorithms typically assume that duplicate edges are absent, which is hard to hold in real-world graph streams, as a result, they tend to sample edges that appear multiple times, leading to inaccurate results. The only algorithm designed to handle duplicate edges is FABLE, but it suffers from significant limitations, including high variance, substantial time complexity, and memory inefficiency due to its reliance on a priority queue. To overcome these limitations, we introduce DEABC (Duplicate-Edge-Aware Butterfly Counting), an innovative method that uses bucket-based priority sampling to accurately estimate the number of butterflies, accounting for duplicate edges. Compared to existing methods, DEABC significantly reduces memory usage by storing only the essential sampled edge data while maintaining high accuracy. We provide rigorous proofs of the unbiasedness and variance bounds for DEABC, ensuring they achieve high accuracy. We compare DEABC with state-of-the-art algorithms on real-world streaming bipartite graphs. The results show that our DEABC outperforms existing methods in memory efficiency and accuracy, while also achieving significantly higher throughput.

The ability of a robot to plan complex behaviors with real-time computation, rather than adhering to predesigned or offline-learned routines, alleviates the need for specialized algorithms or training for each problem instance. Monte Carlo Tree Search is a powerful planning algorithm that strategically explores simulated future possibilities, but it requires a discrete problem representation that is irreconcilable with the continuous dynamics of the physical world. We present Spectral Expansion Tree Search (SETS), a real-time, tree-based planner that uses the spectrum of the locally linearized system to construct a low-complexity and approximately equivalent discrete representation of the continuous world. We prove SETS converges to a bound of the globally optimal solution for continuous, deterministic and differentiable Markov Decision Processes, a broad class of problems that includes underactuated nonlinear dynamics, non-convex reward functions, and unstructured environments. We experimentally validate SETS on drone, spacecraft, and ground vehicle robots and one numerical experiment, each of which is not directly solvable with existing methods. We successfully show SETS automatically discovers a diverse set of optimal behaviors and motion trajectories in real time.

Group equivariant neural networks are growing in importance owing to their ability to generalise well in applications where the data has known underlying symmetries. Recent characterisations of a class of these networks that use high-order tensor power spaces as their layers suggest that they have significant potential; however, their implementation remains challenging owing to the prohibitively expensive nature of the computations that are involved. In this work, we present a fast matrix multiplication algorithm for any equivariant weight matrix that maps between tensor power layer spaces in these networks for four groups: the symmetric, orthogonal, special orthogonal, and symplectic groups. We obtain this algorithm by developing a diagrammatic framework based on category theory that enables us to not only express each weight matrix as a linear combination of diagrams but also makes it possible for us to use these diagrams to factor the original computation into a series of steps that are optimal. We show that this algorithm improves the Big-$O$ time complexity exponentially in comparison to a na\"{i}ve matrix multiplication.

Safe, smooth, and optimal motion planning for nonholonomically constrained mobile robots and autonomous vehicles is essential for achieving reliable, seamless, and efficient autonomy in logistics, mobility, and service industries. In many such application settings, nonholonomic robots, like unicycles with restricted motion, require precise planning and control of both translational and orientational motion to approach specific locations in a designated orientation, such as for approaching changing, parking, and loading areas. In this paper, we introduce a new dual-headway unicycle pose control method by leveraging an adaptively placed headway point in front of the unicycle pose and a tailway point behind the goal pose. In summary, the unicycle robot continuously follows its headway point, which chases the tailway point of the goal pose and the asymptotic motion of the tailway point towards the goal position guides the unicycle robot to approach the goal location with the correct orientation. The simple and intuitive geometric construction of dual-headway unicycle pose control enables an explicit convex feedback motion prediction bound on the closed-loop unicycle motion trajectory for fast and accurate safety verification. We present an application of dual-headway unicycle control for optimal sampling-based motion planning around obstacles. In numerical simulations, we show that optimal unicycle motion planning using dual-headway translation and orientation distances significantly outperforms Euclidean translation and cosine orientation distances in generating smooth motion with minimal travel and turning effort.

This paper introduces a general framework for generate-and-test-based solvers for epistemic logic programs that can be instantiated with different generator and tester programs, and we prove sufficient conditions on those programs for the correctness of the solvers built using this framework. It also introduces a new generator program that incorporates the propagation of epistemic consequences and shows that this can exponentially reduce the number of candidates that need to be tested while only incurring a linear overhead. We implement a new solver based on these theoretical findings and experimentally show that it outperforms existing solvers by achieving a ~3.3x speed-up and solving 91% more instances on well-known benchmarks.

We study the Out-of-Distribution (OOD) generalization in machine learning and propose a general framework that establishes information-theoretic generalization bounds. Our framework interpolates freely between Integral Probability Metric (IPM) and $f$-divergence, which naturally recovers some known results (including Wasserstein- and KL-bounds), as well as yields new generalization bounds. Additionally, we show that our framework admits an optimal transport interpretation. When evaluated in two concrete examples, the proposed bounds either strictly improve upon existing bounds in some cases or match the best existing OOD generalization bounds. Moreover, by focusing on $f$-divergence and combining it with the Conditional Mutual Information (CMI) methods, we derive a family of CMI-based generalization bounds, which include the state-of-the-art ICIMI bound as a special instance. Finally, leveraging these findings, we analyze the generalization of the Stochastic Gradient Langevin Dynamics (SGLD) algorithm, showing that our derived generalization bounds outperform existing information-theoretic generalization bounds in certain scenarios.

Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.

We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.

北京阿比特科技有限公司