亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The recent development of language models has shown promising results by achieving state-of-the-art performance on various natural language tasks by fine-tuning pretrained models. In task-oriented dialogue (ToD) systems, language models can be used for end-to-end training without relying on dialogue state tracking to track the dialogue history but allowing the language models to generate responses according to the context given as input. This paper conducts a comparative study to show the effectiveness and strength of using recent pretrained models for fine-tuning, such as BART and T5, on endto-end ToD systems. The experimental results show substantial performance improvements after language model fine-tuning. The models produce more fluent responses after adding knowledge to the context that guides the model to avoid hallucination and generate accurate entities in the generated responses. Furthermore, we found that BART and T5 outperform GPT-based models in BLEU and F1 scores and achieve state-of-the-art performance in a ToD system.

相關內容

Teaching morals is one of the most important purposes of storytelling. An essential ability for understanding and writing moral stories is bridging story plots and implied morals. Its challenges mainly lie in: (1) grasping knowledge about abstract concepts in morals, (2) capturing inter-event discourse relations in stories, and (3) aligning value preferences of stories and morals concerning good or bad behavior. In this paper, we propose two understanding tasks and two generation tasks to assess these abilities of machines. We present STORAL, a new dataset of Chinese and English human-written moral stories. We show the difficulty of the proposed tasks by testing various models with automatic and manual evaluation on STORAL. Furthermore, we present a retrieval-augmented algorithm that effectively exploits related concepts or events in training sets as additional guidance to improve performance on these tasks.

Response selector is an essential component of generation-based dialogue systems and it aims to pick out an optimal response in a candidate pool to continue the dialogue. The current state-of-the-art methods are mainly based on the encoding paradigm called Cross-Encoder, which separately encodes each context-response pair and ranks the responses according to their fitness scores. However, Cross-Encoder repeatedly encodes the same lengthy context for each response, resulting in high computational costs. Moreover, without considering the relationship among the candidates, it is difficult to figure out which candidate is the best response purely based on the fitness score per candidate. We aim to address these problems through a new paradigm called Panoramic-Encoder. The proposed method encodes all candidates and the context at once and realizes the mutual interaction using a tailored candidate attention mechanism (CAM). It also enables the integration of some effective training techniques, such as the in-batch negative training, which cannot be used in Cross-Encoders. Extensive experiments across four benchmark datasets show that our new method significantly outperforms the current state-of-the-art with lower computational complexity.

To diversify and enrich generated dialogue responses, knowledge-grounded dialogue has been investigated in recent years. The existing methods tackle the knowledge grounding challenge by retrieving the relevant sentences over a large corpus and augmenting the dialogues with explicit extra information. Despite their success, however, the existing works have drawbacks on the inference efficiency. This paper proposes KnowExpert, an end-to-end framework to bypass the explicit retrieval process and inject knowledge into the pre-trained language models with lightweight adapters and adapt to the knowledge-grounded dialogue task. To the best of our knowledge, this is the first attempt to tackle this challenge without retrieval in this task under an open-domain chit-chat scenario. The experimental results show that KknowExpert performs comparably with some retrieval-based baselines while being time-efficient in inference, demonstrating the potential of our proposed direction.

We tackle the Dialogue Belief State Tracking(DST) problem of task-oriented conversational systems. Recent approaches to this problem leveraging Transformer-based models have yielded great results. However, training these models is expensive, both in terms of computational resources and time. Additionally, collecting high quality annotated dialogue datasets remains a challenge for researchers because of the extensive annotation required for training these models. Driven by the recent success of pre-trained language models and prompt-based learning, we explore prompt-based few-shot learning for Dialogue Belief State Tracking. We formulate the DST problem as a 2-stage prompt-based language modelling task and train language models for both tasks and present a comprehensive empirical analysis of their separate and joint performance. We demonstrate the potential of prompt-based methods in few-shot learning for DST and provide directions for future improvement.

As an important task in sentiment analysis, Multimodal Aspect-Based Sentiment Analysis (MABSA) has attracted increasing attention in recent years. However, previous approaches either (i) use separately pre-trained visual and textual models, which ignore the crossmodal alignment or (ii) use vision-language models pre-trained with general pre-training tasks, which are inadequate to identify finegrained aspects, opinions, and their alignments across modalities. To tackle these limitations, we propose a task-specific Vision-Language Pre-training framework for MABSA (VLPMABSA), which is a unified multimodal encoder-decoder architecture for all the pretraining and downstream tasks. We further design three types of task-specific pre-training tasks from the language, vision, and multimodal modalities, respectively. Experimental results show that our approach generally outperforms the state-of-the-art approaches on three MABSA subtasks. Further analysis demonstrates the effectiveness of each pretraining task. The source code is publicly released at //github.com/NUSTM/VLP-MABSA.

Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning-based due to the outstanding performance. In this survey, we mainly focus on the deep learning-based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets.

As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司