亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The success of re-localisation has crucial implications for the practical deployment of robots operating within a prior map or relative to one another in real-world scenarios. Using single-modality, place recognition and localisation can be compromised in challenging environments such as forests. To address this, we propose a strategy to prevent lidar-based re-localisation failure using lidar-image cross-modality. Our solution relies on self-supervised 2D-3D feature matching to predict alignment and misalignment. Leveraging a deep network for lidar feature extraction and relative pose estimation between point clouds, we train a model to evaluate the estimated transformation. A model predicting the presence of misalignment is learned by analysing image-lidar similarity in the embedding space and the geometric constraints available within the region seen in both modalities in Euclidean space. Experimental results using real datasets (offline and online modes) demonstrate the effectiveness of the proposed pipeline for robust re-localisation in unstructured, natural environments.

相關內容

Data augmentation is a common practice to help generalization in the procedure of deep model training. In the context of physiological time series classification, previous research has primarily focused on label-invariant data augmentation methods. However, another class of augmentation techniques (\textit{i.e., Mixup}) that emerged in the computer vision field has yet to be fully explored in the time series domain. In this study, we systematically review the mix-based augmentations, including mixup, cutmix, and manifold mixup, on six physiological datasets, evaluating their performance across different sensory data and classification tasks. Our results demonstrate that the three mix-based augmentations can consistently improve the performance on the six datasets. More importantly, the improvement does not rely on expert knowledge or extensive parameter tuning. Lastly, we provide an overview of the unique properties of the mix-based augmentation methods and highlight the potential benefits of using the mix-based augmentation in physiological time series data.

Logistic regression is an algorithm widely used for binary classification in various real-world applications such as fraud detection, medical diagnosis, and recommendation systems. However, training a logistic regression model with data from different parties raises privacy concerns. Secure Multi-Party Computation (MPC) is a cryptographic tool that allows multiple parties to train a logistic regression model jointly without compromising privacy. The efficiency of the online training phase becomes crucial when dealing with large-scale data in practice. In this paper, we propose an online efficient protocol for privacy-preserving logistic regression based on Function Secret Sharing (FSS). Our protocols are designed in the two non-colluding servers setting and assume the existence of a third-party dealer who only poses correlated randomness to the computing parties. During the online phase, two servers jointly train a logistic regression model on their private data by utilizing pre-generated correlated randomness. Furthermore, we propose accurate and MPC-friendly alternatives to the sigmoid function and encapsulate the logistic regression training process into a function secret sharing gate. The online communication overhead significantly decreases compared with the traditional secure logistic regression training based on secret sharing. We provide both theoretical and experimental analyses to demonstrate the efficiency and effectiveness of our method.

Stencil computation is an extensively-utilized class of scientific-computing applications that can be efficiently accelerated by graphics processing units (GPUs). Out-of-core approaches enable a GPU to handle large stencil codes whose data size is beyond the memory capacity of the GPU. However, current research on out-of-core stencil computation primarily focus on minimizing the amount of data transferred between the CPU and GPU. Few studies consider simultaneously optimizing data transfer and kernel execution. To fill the research gap, this work presents a synergy between on- and off-chip data reuse for out-of-core stencil codes, termed SO2DR. First, overlapping regions between data chunks are shared in the off-chip memory to eliminate redundant CPU-GPU data transfer. Secondly, redundant computation at the off-chip memory level is intentionally introduced to decouple kernel execution from region sharing, hence enabling data reuse in the on-chip memory. Experimental results demonstrate that SO2DR significantly enhances the kernel-execution performance while reducing the CPU-GPU data-transfer time. Specifically, SO2DR achieves average speedups of 2.78x and 1.14x for five stencil benchmarks, compared to an out-of-core stencil code which is free of redundant transfer and computation, and an in-core stencil code which is free of data transfer, respectively.

Obtaining sparse, interpretable representations of observable data is crucial in many machine learning and signal processing tasks. For data representing flows along the edges of a graph, an intuitively interpretable way to obtain such representations is to lift the graph structure to a simplicial complex: The eigenvectors of the associated Hodge-Laplacian, respectively the incidence matrices of the corresponding simplicial complex then induce a Hodge decomposition, which can be used to represent the observed data in terms of gradient, curl, and harmonic flows. In this paper, we generalize this approach to cellular complexes and introduce the cell inference optimization problem, i.e., the problem of augmenting the observed graph by a set of cells, such that the eigenvectors of the associated Hodge Laplacian provide a sparse, interpretable representation of the observed edge flows on the graph. We show that this problem is NP-hard and introduce an efficient approximation algorithm for its solution. Experiments on real-world and synthetic data demonstrate that our algorithm outperforms current state-of-the-art methods while being computationally efficient.

The ability to manipulate objects in a desired configurations is a fundamental requirement for robots to complete various practical applications. While certain goals can be achieved by picking and placing the objects of interest directly, object reorientation is needed for precise placement in most of the tasks. In such scenarios, the object must be reoriented and re-positioned into intermediate poses that facilitate accurate placement at the target pose. To this end, we propose a reorientation planning method, ReorientDiff, that utilizes a diffusion model-based approach. The proposed method employs both visual inputs from the scene, and goal-specific language prompts to plan intermediate reorientation poses. Specifically, the scene and language-task information are mapped into a joint scene-task representation feature space, which is subsequently leveraged to condition the diffusion model. The diffusion model samples intermediate poses based on the representation using classifier-free guidance and then uses gradients of learned feasibility-score models for implicit iterative pose-refinement. The proposed method is evaluated using a set of YCB-objects and a suction gripper, demonstrating a success rate of 95.2% in simulation. Overall, our study presents a promising approach to address the reorientation challenge in manipulation by learning a conditional distribution, which is an effective way to move towards more generalizable object manipulation. For more results, checkout our website: //utkarshmishra04.github.io/ReorientDiff.

Accurate analytical and numerical modeling of multiscale systems is a daunting task. The need to properly resolve spatial and temporal scales spanning multiple orders of magnitude pushes the limits of both our theoretical models as well as our computational capabilities. Rigorous upscaling techniques enable efficient computation while bounding/tracking errors and helping to make informed cost-accuracy tradeoffs. The biggest challenges arise when the applicability conditions of upscaled models break down. Here, we present a non-intrusive two-way (iterative bottom-up top-down) coupled hybrid model, applied to thermal runaway in battery packs, that combines fine-scale and upscaled equations in the same numerical simulation to achieve predictive accuracy while limiting computational costs. First, we develop two methods with different orders of accuracy to enforce continuity at the coupling boundary. Then, we derive weak (i.e., variational) formulations of the fine-scale and upscaled governing equations for finite element (FE) discretization and numerical implementation in FEniCS. We demonstrate that hybrid simulations can accurately predict the average temperature fields within error bounds determined a priori by homogenization theory. Finally, we demonstrate the computational efficiency of the hybrid algorithm against fine-scale simulations.

In the presence of heterogeneous data, where randomly rotated objects fall into multiple underlying categories, it is challenging to simultaneously classify them into clusters and synchronize them based on pairwise relations. This gives rise to the joint problem of community detection and synchronization. We propose a series of semidefinite relaxations, and prove their exact recovery when extending the celebrated stochastic block model to this new setting where both rotations and cluster identities are to be determined. Numerical experiments demonstrate the efficacy of our proposed algorithms and confirm our theoretical result which indicates a sharp phase transition for exact recovery.

Edge/fog computing, as a distributed computing paradigm, satisfies the low-latency requirements of ever-increasing number of IoT applications and has become the mainstream computing paradigm behind IoT applications. However, because large number of IoT applications require execution on the edge/fog resources, the servers may be overloaded. Hence, it may disrupt the edge/fog servers and also negatively affect IoT applications' response time. Moreover, many IoT applications are composed of dependent components incurring extra constraints for their execution. Besides, edge/fog computing environments and IoT applications are inherently dynamic and stochastic. Thus, efficient and adaptive scheduling of IoT applications in heterogeneous edge/fog computing environments is of paramount importance. However, limited computational resources on edge/fog servers imposes an extra burden for applying optimal but computationally demanding techniques. To overcome these challenges, we propose a Deep Reinforcement Learning-based IoT application Scheduling algorithm, called DRLIS to adaptively and efficiently optimize the response time of heterogeneous IoT applications and balance the load of the edge/fog servers. We implemented DRLIS as a practical scheduler in the FogBus2 function-as-a-service framework for creating an edge-fog-cloud integrated serverless computing environment. Results obtained from extensive experiments show that DRLIS significantly reduces the execution cost of IoT applications by up to 55%, 37%, and 50% in terms of load balancing, response time, and weighted cost, respectively, compared with metaheuristic algorithms and other reinforcement learning techniques.

Fairness problems in recommender systems often have a complexity in practice that is not adequately captured in simplified research formulations. A social choice formulation of the fairness problem, operating within a multi-agent architecture of fairness concerns, offers a flexible and multi-aspect alternative to fairness-aware recommendation approaches. Leveraging social choice allows for increased generality and the possibility of tapping into well-studied social choice algorithms for resolving the tension between multiple, competing fairness concerns. This paper explores a range of options for choice mechanisms in multi-aspect fairness applications using both real and synthetic data and shows that different classes of choice and allocation mechanisms yield different but consistent fairness / accuracy tradeoffs. We also show that a multi-agent formulation offers flexibility in adapting to user population dynamics.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司