The need for remote tools for healthcare monitoring has never been more apparent. Camera measurement of vital signs leverages imaging devices to compute physiological changes by analyzing images of the human body. Building on advances in optics, machine learning, computer vision and medicine these techniques have progressed significantly since the invention of digital cameras. This paper presents a comprehensive survey of camera measurement of physiological vital signs, describing they vital signs that can be measured and the computational techniques for doing so. I cover both clinical and non-clinical applications and the challenges that need to be overcome for these applications to advance from proofs-of-concept. Finally, I describe the current resources (datasets and code) available to the research community and provide a comprehensive webpage (//cameravitals.github.io/) with links to these resource and a categorized list of all the papers referenced in this article.
Biometric authentication prospered during the 2010s. Vulnerability to spoofing attacks remains an inherent problem with traditional biometrics. Recently, unobservable physiological signals (e.g., Electroencephalography, Photoplethysmography, Electrocardiography) as biometrics have been considered a potential solution to this problem. In particular, Photoplethysmography (PPG) measures the change of blood flow of the human body by an optical method. Clinically, researchers commonly use PPG signals to obtain patients' blood oxygen saturation, heart rate, and other information to assist in diagnosing heart-related diseases. Since PPG signals are easy to obtain and contain a wealth of individual cardiac information, researchers have begun to explore its potential applications in information security. The unique advantages (simple acquisition, difficult to steal, and live detection) of the PPG signal allow it to improve the security and usability of the authentication in various aspects. However, the research on PPG-based authentication is still in its infancy. The lack of systematization hinders new research in this field. We conduct a comprehensive study of PPG-based authentication and discuss these applications' limitations before pointing out future research directions.
When explaining AI behavior to humans, how is the communicated information being comprehended by the human explainee, and does it match what the explanation attempted to communicate? When can we say that an explanation is explaining something? We aim to provide an answer by leveraging theory of mind literature about the folk concepts that humans use to understand behavior. We establish a framework of social attribution by the human explainee, which describes the function of explanations: the concrete information that humans comprehend from them. Specifically, effective explanations should be coherent (communicate information which generalizes to other contrast cases), complete (communicating an explicit contrast case, objective causes, and subjective causes), and interactive (surfacing and resolving contradictions to the generalization property through iterations). We demonstrate that many XAI mechanisms can be mapped to folk concepts of behavior. This allows us to uncover their modes of failure that prevent current methods from explaining effectively, and what is necessary to enable coherent explanations.
Scientific research changed profoundly over the last 30 years, in all its aspects. Scientific publishing has changed as well, mainly because of the strong increased number of submitted papers and because of the appearance of Open Access journals and publishers. We propose some reflections on these issues.
Both logic programming in general, and Prolog in particular, have a long and fascinating history, intermingled with that of many disciplines they inherited from or catalyzed. A large body of research has been gathered over the last 50 years, supported by many Prolog implementations. Many implementations are still actively developed, while new ones keep appearing. Often, the features added by different systems were motivated by the interdisciplinary needs of programmers and implementors, yielding systems that, while sharing the "classic" core language, and, in particular, the main aspects of the ISO-Prolog standard, also depart from each other in other aspects. This obviously poses challenges for code portability. The field has also inspired many related, but quite different languages that have created their own communities. This article aims at integrating and applying the main lessons learned in the process of evolution of Prolog. It is structured into three major parts. Firstly, we overview the evolution of Prolog systems and the community approximately up to the ISO standard, considering both the main historic developments and the motivations behind several Prolog implementations, as well as other logic programming languages influenced by Prolog. Then, we discuss the Prolog implementations that are most active after the appearance of the standard: their visions, goals, commonalities, and incompatibilities. Finally, we perform a SWOT analysis in order to better identify the potential of Prolog, and propose future directions along which Prolog might continue to add useful features, interfaces, libraries, and tools, while at the same time improving compatibility between implementations.
In recent years, there has been increasing interest in causal reasoning for designing fair decision-making systems due to its compatibility with legal frameworks, interpretability for human stakeholders, and robustness to spurious correlations inherent in observational data, among other factors. The recent attention to causal fairness, however, has been accompanied with great skepticism due to practical and epistemological challenges with applying current causal fairness approaches in the literature. Motivated by the long-standing empirical work on causality in econometrics, social sciences, and biomedical sciences, in this paper we lay out the conditions for appropriate application of causal fairness under the "potential outcomes framework." We highlight key aspects of causal inference that are often ignored in the causal fairness literature. In particular, we discuss the importance of specifying the nature and timing of interventions on social categories such as race or gender. Precisely, instead of postulating an intervention on immutable attributes, we propose a shift in focus to their perceptions and discuss the implications for fairness evaluation. We argue that such conceptualization of the intervention is key in evaluating the validity of causal assumptions and conducting sound causal analysis including avoiding post-treatment bias. Subsequently, we illustrate how causality can address the limitations of existing fairness metrics, including those that depend upon statistical correlations. Specifically, we introduce causal variants of common statistical notions of fairness, and we make a novel observation that under the causal framework there is no fundamental disagreement between different notions of fairness. Finally, we conduct extensive experiments where we demonstrate our approach for evaluating and mitigating unfairness, specially when post-treatment variables are present.
The COVID-19 pandemic has placed a severe mental strain on people in general, and on young people in particular. Online support forums offer opportunities for peer-to-peer health support, which can ease pressure on professional and established volunteer services when demand is high. Such forums can also be used to monitor at-risk communities to identify concerns and causes of psychological stress. We created and monitored r/COVID19_support, an online forum for people seeking support during the COVID-19 pandemic, on the platform Reddit. We identify posts made by users self-identifying as students or posting about college/university life, then coded these posts to identify emerging themes that related to triggers of psychological anxiety and distress. 147 posts were made to the forum by 111 unique users during the study period. A number of themes were identified by manual coding, included: feelings of grief associated with the loss of college-related life experiences, such as graduation ceremonies or proms; difficulties with focussing on online and self-guided learning; and fears for the future, in particular of graduating into a constrained job market. The identification of specific issues enabled users to be signposted to information to help them cope with address those particular concerns. Monitoring peer-to-peer forums can help to identify specific issues with which vulnerable groups may require additional support, enabling users to be signposted on to high-quality information to address specific issues.
Face recognition is one of the most studied research topics in the community. In recent years, the research on face recognition has shifted to using 3D facial surfaces, as more discriminating features can be represented by the 3D geometric information. This survey focuses on reviewing the 3D face recognition techniques developed in the past ten years which are generally categorized into conventional methods and deep learning methods. The categorized techniques are evaluated using detailed descriptions of the representative works. The advantages and disadvantages of the techniques are summarized in terms of accuracy, complexity and robustness to face variation (expression, pose and occlusions, etc). The main contribution of this survey is that it comprehensively covers both conventional methods and deep learning methods on 3D face recognition. In addition, a review of available 3D face databases is provided, along with the discussion of future research challenges and directions.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.