Large-scale pre-trained language models have contributed significantly to natural language processing by demonstrating remarkable abilities as few-shot learners. However, their effectiveness depends mainly on scaling the model parameters and prompt design, hindering their implementation in most real-world applications. This study proposes a novel pluggable, extensible, and efficient approach named DifferentiAble pRompT (DART), which can convert small language models into better few-shot learners without any prompt engineering. The main principle behind this approach involves reformulating potential natural language processing tasks into the task of a pre-trained language model and differentially optimizing the prompt template as well as the target label with backpropagation. Furthermore, the proposed approach can be: (i) Plugged to any pre-trained language models; (ii) Extended to widespread classification tasks. A comprehensive evaluation of standard NLP tasks demonstrates that the proposed approach achieves a better few-shot performance. Code is available in //github.com/zjunlp/DART.
Recent development of large-scale pre-trained language models (PLM) have significantly improved the capability of models in various NLP tasks, in terms of performance after task-specific fine-tuning and zero-shot / few-shot learning. However, many of such models come with a dauntingly huge size that few institutions can afford to pre-train, fine-tune or even deploy, while moderate-sized models usually lack strong generalized few-shot learning capabilities. In this paper, we first elaborate the current obstacles of using PLM models in terms of the Impossible Triangle: 1) moderate model size, 2) state-of-the-art few-shot learning capability, and 3) state-of-the-art fine-tuning capability. We argue that all existing PLM models lack one or more properties from the Impossible Triangle. To remedy these missing properties of PLMs, various techniques have been proposed, such as knowledge distillation, data augmentation and prompt learning, which inevitably brings additional work to the application of PLMs in real scenarios. We then offer insights into future research directions of PLMs to achieve the Impossible Triangle, and break down the task into several key phases.
Recent state-of-the-art computer vision systems are trained from natural language supervision, ranging from simple object category names to descriptive captions. This free form of supervision ensures high generality and usability of the learned visual models, based on extensive heuristics on data collection to cover as many visual concepts as possible. Alternatively, learning with external knowledge about images is a promising way which leverages a much more structured source of supervision. In this paper, we propose K-LITE (Knowledge-augmented Language-Image Training and Evaluation), a simple strategy to leverage external knowledge to build transferable visual systems: In training, it enriches entities in natural language with WordNet and Wiktionary knowledge, leading to an efficient and scalable approach to learning image representations that can understand both visual concepts and their knowledge; In evaluation, the natural language is also augmented with external knowledge and then used to reference learned visual concepts (or describe new ones) to enable zero-shot and few-shot transfer of the pre-trained models. We study the performance of K-LITE on two important computer vision problems, image classification and object detection, benchmarking on 20 and 13 different existing datasets, respectively. The proposed knowledge-augmented models show significant improvement in transfer learning performance over existing methods.
Pretrained language models can be effectively stimulated by textual prompts or demonstrations, especially in low-data scenarios. Recent works have focused on automatically searching discrete or continuous prompts or optimized verbalizers, yet studies for the demonstration are still limited. Concretely, the demonstration examples are crucial for an excellent final performance of prompt-tuning. In this paper, we propose a novel pluggable, extensible, and efficient approach named contrastive demonstration tuning, which is free of demonstration sampling. Furthermore, the proposed approach can be: (i) Plugged to any previous prompt-tuning approaches; (ii) Extended to widespread classification tasks with a large number of categories. Experimental results on 16 datasets illustrate that our method integrated with previous approaches LM-BFF and P-tuning can yield better performance. Code is available in //github.com/zjunlp/PromptKG/tree/main/research/Demo-Tuning.
Although adapting pre-trained language models with few examples has shown promising performance on text classification, there is a lack of understanding of where the performance gain comes from. In this work, we propose to answer this question by interpreting the adaptation behavior using post-hoc explanations from model predictions. By modeling feature statistics of explanations, we discover that (1) without fine-tuning, pre-trained models (e.g. BERT and RoBERTa) show strong prediction bias across labels; (2) although few-shot fine-tuning can mitigate the prediction bias and demonstrate promising prediction performance, our analysis shows models gain performance improvement by capturing non-task-related features (e.g. stop words) or shallow data patterns (e.g. lexical overlaps). These observations alert that pursuing model performance with fewer examples may incur pathological prediction behavior, which requires further sanity check on model predictions and careful design in model evaluations in few-shot fine-tuning.
Pre-trained models are widely used in the tasks of natural language processing nowadays. However, in the specific field of text simplification, the research on improving pre-trained models is still blank. In this work, we propose a continued pre-training method for text simplification. Specifically, we propose a new masked language modeling (MLM) mechanism, which does not randomly mask words but only masks simple words. The new mechanism can make the model learn to generate simple words. We use a small-scale simple text dataset for continued pre-training and employ two methods to identify simple words from the texts. We choose BERT, a representative pre-trained model, and continue pre-training it using our proposed method. Finally, we obtain SimpleBERT, which surpasses BERT in both lexical simplification and sentence simplification tasks and has achieved state-of-the-art results on multiple datasets. What's more, SimpleBERT can replace BERT in existing simplification models without modification.
With the increasing adoption of NLP models in real-world products, it becomes more and more important to protect these models from privacy leakage. Because private information in language data is sparse, previous research formalized a Selective-Differential-Privacy (SDP) notion to provide protection for sensitive tokens detected by policy functions, and prove its effectiveness on RNN-based models. But the previous mechanism requires separating the private and public model parameters and thus cannot be applied on large attention-based models. In this paper, we propose a simple yet effective just-fine-tune-twice privacy mechanism to first fine-tune on in-domain redacted data and then on in-domain private data, to achieve SDP for large Transformer-based language models. We also design explicit and contextual policy functions to provide protections at different levels. Experiments show that our models achieve strong performance while staying robust to the canary insertion attack. We further show that even under low-resource settings with a small amount of in-domain data, SDP can still improve the model utility. We will release the code, data and models to facilitate future research.
A recent study by Ahmed and Devanbu reported that using a corpus of code written in multilingual datasets to fine-tune multilingual Pre-trained Language Models (PLMs) achieves higher performance as opposed to using a corpus of code written in just one programming language. However, no analysis was made with respect to fine-tuning monolingual PLMs. Furthermore, some programming languages are inherently different and code written in one language usually cannot be interchanged with the others, i.e., Ruby and Java code possess very different structure. To better understand how monolingual and multilingual PLMs affect different programming languages, we investigate 1) the performance of PLMs on Ruby for two popular Software Engineering tasks: Code Summarization and Code Search, 2) the strategy (to select programming languages) that works well on fine-tuning multilingual PLMs for Ruby, and 3) the performance of the fine-tuned PLMs on Ruby given different code lengths. In this work, we analyze over a hundred of pre-trained and fine-tuned models. Our results show that 1) multilingual PLMs have a lower Performance-to-Time Ratio (the BLEU, METEOR, or MRR scores over the fine-tuning duration) as compared to monolingual PLMs, 2) our proposed strategy to select target programming languages to fine-tune multilingual PLMs is effective: it reduces the time to fine-tune yet achieves higher performance in Code Summarization and Code Search tasks, and 3) our proposed strategy consistently shows good performance on different code lengths.
Large, pre-trained transformer-based language models such as BERT have drastically changed the Natural Language Processing (NLP) field. We present a survey of recent work that uses these large language models to solve NLP tasks via pre-training then fine-tuning, prompting, or text generation approaches. We also present approaches that use pre-trained language models to generate data for training augmentation or other purposes. We conclude with discussions on limitations and suggested directions for future research.
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.
Few-shot Learning aims to learn classifiers for new classes with only a few training examples per class. Existing meta-learning or metric-learning based few-shot learning approaches are limited in handling diverse domains with various number of labels. The meta-learning approaches train a meta learner to predict weights of homogeneous-structured task-specific networks, requiring a uniform number of classes across tasks. The metric-learning approaches learn one task-invariant metric for all the tasks, and they fail if the tasks diverge. We propose to deal with these limitations with meta metric learning. Our meta metric learning approach consists of task-specific learners, that exploit metric learning to handle flexible labels, and a meta learner, that discovers good parameters and gradient decent to specify the metrics in task-specific learners. Thus the proposed model is able to handle unbalanced classes as well as to generate task-specific metrics. We test our approach in the `$k$-shot $N$-way' few-shot learning setting used in previous work and new realistic few-shot setting with diverse multi-domain tasks and flexible label numbers. Experiments show that our approach attains superior performances in both settings.