亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cooperative utilization of Unmanned Aerial Vehicles (UAVs) in public and military surveillance applications has attracted significant attention in recent years. Most UAVs are equipped with sensors that have bounded coverage and wireless communication equipment with limited range. Such limitations pose challenging problems to monitor mobile targets. This paper examines fulfilling surveillance objectives to achieve better coverage while building a resilient network between UAVs with an extended lifetime. The multiple target tracking problem is studied by including a relay UAV within the fleet whose trajectory is autonomously calculated in order to achieve a reliable connected network among all UAVs. Optimization problems are formulated for single-hop and multi-hop communications among UAVs. Three heuristic algorithms are proposed for multi-hop communications and their performances are evaluated. A hybrid algorithm, which dynamically switches between single-hop and multi-hop communications is also proposed. The effect of the time horizon considered in the optimization problem is studied. Performance evaluation results show that the trajectories generated for the relay UAV by the hybrid algorithm can achieve network lifetimes that are within 5% of the maximum possible network lifetime which can be obtained if the entire trajectories of all targets were known a priori.

相關內容

Supervised speech enhancement has gained significantly from recent advancements in neural networks, especially due to their ability to non-linearly fit the diverse representations of target speech, such as waveform or spectrum. However, these direct-fitting solutions continue to face challenges with degraded speech and residual noise in hearing evaluations. By bridging the speech enhancement and the Information Bottleneck principle in this letter, we rethink a universal plug-and-play strategy and propose a Refining Underlying Information framework called RUI to rise to the challenges both in theory and practice. Specifically, we first transform the objective of speech enhancement into an incremental convergence problem of mutual information between comprehensive speech characteristics and individual speech characteristics, e.g., spectral and acoustic characteristics. By doing so, compared with the existing direct-fitting solutions, the underlying information stems from the conditional entropy of acoustic characteristic given spectral characteristics. Therefore, we design a dual-path multiple refinement iterator based on the chain rule of entropy to refine this underlying information for further approximating target speech. Experimental results on DNS-Challenge dataset show that our solution consistently improves 0.3+ PESQ score over baselines, with only additional 1.18 M parameters. The source code is available at //github.com/caoruitju/RUI_SE.

Large Language Models (LLMs) have revolutionized natural language processing tasks, demonstrating their exceptional capabilities in various domains. However, their potential for behavior graph understanding in job recommendations remains largely unexplored. This paper focuses on unveiling the capability of large language models in understanding behavior graphs and leveraging this understanding to enhance recommendations in online recruitment, including the promotion of out-of-distribution (OOD) application. We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs and uncover underlying patterns and relationships. Specifically, we propose a meta-path prompt constructor that leverages LLM recommender to understand behavior graphs for the first time and design a corresponding path augmentation module to alleviate the prompt bias introduced by path-based sequence input. By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users. We evaluate the effectiveness of our approach on a comprehensive dataset and demonstrate its ability to improve the relevance and quality of recommended quality. This research not only sheds light on the untapped potential of large language models but also provides valuable insights for developing advanced recommendation systems in the recruitment market. The findings contribute to the growing field of natural language processing and offer practical implications for enhancing job search experiences. We release the code at //github.com/WLiK/GLRec.

In visual-based Reinforcement Learning (RL), agents often struggle to generalize well to environmental variations in the state space that were not observed during training. The variations can arise in both task-irrelevant features, such as background noise, and task-relevant features, such as robot configurations, that are related to the optimal decisions. To achieve generalization in both situations, agents are required to accurately understand the impact of changed features on the decisions, i.e., establishing the true associations between changed features and decisions in the policy model. However, due to the inherent correlations among features in the state space, the associations between features and decisions become entangled, making it difficult for the policy to distinguish them. To this end, we propose Saliency-Guided Features Decorrelation (SGFD) to eliminate these correlations through sample reweighting. Concretely, SGFD consists of two core techniques: Random Fourier Functions (RFF) and the saliency map. RFF is utilized to estimate the complex non-linear correlations in high-dimensional images, while the saliency map is designed to identify the changed features. Under the guidance of the saliency map, SGFD employs sample reweighting to minimize the estimated correlations related to changed features, thereby achieving decorrelation in visual RL tasks. Our experimental results demonstrate that SGFD can generalize well on a wide range of test environments and significantly outperforms state-of-the-art methods in handling both task-irrelevant variations and task-relevant variations.

Gait recognition is a biometric technology that has received extensive attention. Most existing gait recognition algorithms are unimodal, and a few multimodal gait recognition algorithms perform multimodal fusion only once. None of these algorithms may fully exploit the complementary advantages of the multiple modalities. In this paper, by considering the temporal and spatial characteristics of gait data, we propose a multi-stage feature fusion strategy (MSFFS), which performs multimodal fusions at different stages in the feature extraction process. Also, we propose an adaptive feature fusion module (AFFM) that considers the semantic association between silhouettes and skeletons. The fusion process fuses different silhouette areas with their more related skeleton joints. Since visual appearance changes and time passage co-occur in a gait period, we propose a multiscale spatial-temporal feature extractor (MSSTFE) to learn the spatial-temporal linkage features thoroughly. Specifically, MSSTFE extracts and aggregates spatial-temporal linkages information at different spatial scales. Combining the strategy and modules mentioned above, we propose a multi-stage adaptive feature fusion (MSAFF) neural network, which shows state-of-the-art performance in many experiments on three datasets. Besides, MSAFF is equipped with feature dimensional pooling (FD Pooling), which can significantly reduce the dimension of the gait representations without hindering the accuracy. //github.com/ShinanZou/MSAFF

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司