This paper investigates the role of text in visualizations, specifically the impact of text position, semantic content, and biased wording. Two empirical studies were conducted based on two tasks (predicting data trends and appraising bias) using two visualization types (bar and line charts). While the addition of text had a minimal effect on how people perceive data trends, there was a significant impact on how biased they perceive the authors to be. This finding revealed a relationship between the degree of bias in textual information and the perception of the authors' bias. Exploratory analyses support an interaction between a person's prediction and the degree of bias they perceived. This paper also develops a crowdsourced method for creating chart annotations that range from neutral to highly biased. This research highlights the need for designers to mitigate potential polarization of readers' opinions based on how authors' ideas are expressed.
With the development of diffusion models, text-guided image style transfer has demonstrated high-quality controllable synthesis results. However, the utilization of text for diverse music style transfer poses significant challenges, primarily due to the limited availability of matched audio-text datasets. Music, being an abstract and complex art form, exhibits variations and intricacies even within the same genre, thereby making accurate textual descriptions challenging. This paper presents a music style transfer approach that effectively captures musical attributes using minimal data. We introduce a novel time-varying textual inversion module to precisely capture mel-spectrogram features at different levels. During inference, we propose a bias-reduced stylization technique to obtain stable results. Experimental results demonstrate that our method can transfer the style of specific instruments, as well as incorporate natural sounds to compose melodies. Samples and source code are available at //lsfhuihuiff.github.io/MusicTI/.
This paper analyzes a popular computational framework to solve infinite-dimensional Bayesian inverse problems, discretizing the prior and the forward model in a finite-dimensional weighted inner product space. We demonstrate the benefit of working on a weighted space by establishing operator-norm bounds for finite element and graph-based discretizations of Mat\'ern-type priors and deconvolution forward models. For linear-Gaussian inverse problems, we develop a general theory to characterize the error in the approximation to the posterior. We also embed the computational framework into ensemble Kalman methods and MAP estimators for nonlinear inverse problems. Our operator-norm bounds for prior discretizations guarantee the scalability and accuracy of these algorithms under mesh refinement.
Bias benchmarks are a popular method for studying the negative impacts of bias in LLMs, yet there has been little empirical investigation of whether these benchmarks are actually indicative of how real world harm may manifest in the real world. In this work, we study the correspondence between such decontextualized "trick tests" and evaluations that are more grounded in Realistic Use and Tangible {Effects (i.e. RUTEd evaluations). We explore this correlation in the context of gender-occupation bias--a popular genre of bias evaluation. We compare three de-contextualized evaluations adapted from the current literature to three analogous RUTEd evaluations applied to long-form content generation. We conduct each evaluation for seven instruction-tuned LLMs. For the RUTEd evaluations, we conduct repeated trials of three text generation tasks: children's bedtime stories, user personas, and English language learning exercises. We found no correspondence between trick tests and RUTEd evaluations. Specifically, selecting the least biased model based on the de-contextualized results coincides with selecting the model with the best performance on RUTEd evaluations only as often as random chance. We conclude that evaluations that are not based in realistic use are likely insufficient to mitigate and assess bias and real-world harms.
Natural language and search interfaces intuitively facilitate data exploration and provide visualization responses to diverse analytical queries based on the underlying datasets. However, these interfaces often fail to interpret more complex analytical intents, such as discerning subtleties and quantifiable differences between terms like "bump" and "spike" in the context of COVID cases, for example. We address this gap by extending the capabilities of a data exploration search interface for interpreting semantic concepts in time series trends. We first create a comprehensive dataset of semantic concepts by mapping quantifiable univariate data trends such as slope and angle to crowdsourced, semantically meaningful trend labels. The dataset contains quantifiable properties that capture the slope-scalar effect of semantic modifiers like "sharply" and "gradually," as well as multi-line trends (e.g., "peak," "valley"). We demonstrate the utility of this dataset in SlopeSeeker, a tool that supports natural language querying of quantifiable trends, such as "show me stocks that tanked in 2010." The tool incorporates novel scoring and ranking techniques based on semantic relevance and visual prominence to present relevant trend chart responses containing these semantic trend concepts. In addition, SlopeSeeker provides a faceted search interface for users to navigate a semantic hierarchy of concepts from general trends (e.g., "increase") to more specific ones (e.g., "sharp increase"). A preliminary user evaluation of the tool demonstrates that the search interface supports greater expressivity of queries containing concepts that describe data trends. We identify potential future directions for leveraging our publicly available quantitative semantics dataset in other data domains and for novel visual analytics interfaces.
We analyze the behaviors of open large language models (LLMs) on the task of data-to-text (D2T) generation, i.e., generating coherent and relevant text from structured data. To avoid the issue of LLM training data contamination with standard benchmarks, we design Quintd - a tool for collecting novel structured data records from public APIs. Using a dataset collected with Quintd and leveraging reference-free evaluation, we analyze model behaviors on five D2T generation tasks. We find that recent open LLMs (Llama2, Mistral, and Zephyr) can generate fluent and coherent text from standard data formats in zero-shot settings. However, we also show that the semantic accuracy of the outputs is a major issue: both according to our GPT-4-based metric and human annotators, more than 80% of the outputs of open LLMs contain a semantic error. We publicly release the code, data, and model outputs.
This paper attempts to provide an overview of current approaches for solving inverse problems in imaging using variational methods and machine learning. A special focus lies on point estimators and their robustness against adversarial perturbations. In this context results of numerical experiments for a one-dimensional toy problem are provided, showing the robustness of different approaches and empirically verifying theoretical guarantees. Another focus of this review is the exploration of the subspace of data consistent solutions through explicit guidance to satisfy specific semantic or textural properties.
Advances in language modeling have paved the way for novel human-AI co-writing experiences. This paper explores how varying levels of scaffolding from large language models (LLMs) shape the co-writing process. Employing a within-subjects field experiment with a Latin square design, we asked participants (N=131) to respond to argumentative writing prompts under three randomly sequenced conditions: no AI assistance (control), next-sentence suggestions (low scaffolding), and next-paragraph suggestions (high scaffolding). Our findings reveal a U-shaped impact of scaffolding on writing quality and productivity (words/time). While low scaffolding did not significantly improve writing quality or productivity, high scaffolding led to significant improvements, especially benefiting non-regular writers and less tech-savvy users. No significant cognitive burden was observed while using the scaffolded writing tools, but a moderate decrease in text ownership and satisfaction was noted. Our results have broad implications for the design of AI-powered writing tools, including the need for personalized scaffolding mechanisms.
This paper identifies a cultural dominance issue within large language models (LLMs) due to the predominant use of English data in model training (e.g., ChatGPT). LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages. To systematically evaluate the cultural dominance issue, we build a benchmark of concrete (e.g., holidays and songs) and abstract (e.g., values and opinions) cultural objects. Empirical results show that the representative GPT models suffer from the culture dominance problem, where GPT-4 is the most affected while text-davinci-003 suffers the least from this problem. Our study emphasizes the need to critically examine cultural dominance and ethical consideration in their development and deployment. We show that two straightforward methods in model development (i.e., pretraining on more diverse data) and deployment (e.g., culture-aware prompting) can significantly mitigate the cultural dominance issue in LLMs.
With the advent of large language models (LLM), the line between human-crafted and machine-generated texts has become increasingly blurred. This paper delves into the inquiry of identifying discernible and unique linguistic properties in texts that were written by humans, particularly uncovering the underlying discourse structures of texts beyond their surface structures. Introducing a novel methodology, we leverage hierarchical parse trees and recursive hypergraphs to unveil distinctive discourse patterns in texts produced by both LLMs and humans. Empirical findings demonstrate that, although both LLMs and humans generate distinct discourse patterns influenced by specific domains, human-written texts exhibit more structural variability, reflecting the nuanced nature of human writing in different domains. Notably, incorporating hierarchical discourse features enhances binary classifiers' overall performance in distinguishing between human-written and machine-generated texts, even on out-of-distribution and paraphrased samples. This underscores the significance of incorporating hierarchical discourse features in the analysis of text patterns. The code and dataset will be available at [TBA].
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.