亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatic visual inspection of synthetic fibre ropes (SFRs) is a challenging task in the field of offshore, wind turbine industries, etc. The presence of any defect in SFRs can compromise their structural integrity and pose significant safety risks. Due to the large size and weight of these ropes, it is often impractical to detach and inspect them frequently. Therefore, there is a critical need to develop efficient defect detection methods to assess their remaining useful life (RUL). To address this challenge, a comprehensive dataset has been generated, comprising a total of 6,942 raw images representing both normal and defective SFRs. The dataset encompasses a wide array of defect scenarios which may occur throughout their operational lifespan, including but not limited to placking defects, cut strands, chafings, compressions, core outs and normal. This dataset serves as a resource to support computer vision applications, including object detection, classification, and segmentation, aimed at detecting and analyzing defects in SFRs. The availability of this dataset will facilitate the development and evaluation of robust defect detection algorithms. The aim of generating this dataset is to assist in the development of automated defect detection systems that outperform traditional visual inspection methods, thereby paving the way for safer and more efficient utilization of SFRs across a wide range of applications.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

In the present work, a rate-dependent cohesive zone model for the fracture of polymeric interfaces is presented. Inverse calibration of parameters for such complex models through trial and error is computationally tedious due to the large number of parameters and the high computational cost associated. The obtained parameter values are often non-unique and the calibration inherits higher uncertainty when the available experimental data is limited. To alleviate these difficulties, a Bayesian calibration approach is used for the proposed rate-dependent cohesive zone model in this work. The proposed cohesive zone model accounts for both reversible elastic and irreversible rate-dependent separation sliding deformation at the interface. The viscous dissipation due to the irreversible opening at the interface is modeled using elastic-viscoplastic kinematics that incorporates the effects of strain rate. To quantify the uncertainty associated with the inverse parameter estimation, a modular Bayesian approach is employed to calibrate the unknown model parameters, accounting for the parameter uncertainty of the cohesive zone model. Further, to quantify the model uncertainties, such as incorrect assumptions or missing physics, a discrepancy function is introduced and it is approximated as a Gaussian process. The improvement in the model predictions following the introduction of a discrepancy function is demonstrated justifying the need for a discrepancy term. Finally, the overall uncertainty of the model is quantified in a predictive setting and the results are provided as confidence intervals. A sensitivity analysis is also performed to understand the effect of the variability of the inputs on the nature of the output.

A mixture of multivariate Poisson-log normal factor analyzers is introduced by imposing constraints on the covariance matrix, which resulted in flexible models for clustering purposes. In particular, a class of eight parsimonious mixture models based on the mixtures of factor analyzers model are introduced. Variational Gaussian approximation is used for parameter estimation, and information criteria are used for model selection. The proposed models are explored in the context of clustering discrete data arising from RNA sequencing studies. Using real and simulated data, the models are shown to give favourable clustering performance. The GitHub R package for this work is available at //github.com/anjalisilva/mixMPLNFA and is released under the open-source MIT license.

The problem of optimizing discrete phases in a reconfigurable intelligent surface (RIS) to maximize the received power at a user equipment is addressed. Necessary and sufficient conditions to achieve this maximization are given. These conditions are employed in an algorithm to achieve the maximization. New versions of the algorithm are given that are proven to achieve convergence in N or fewer steps whether the direct link is completely blocked or not, where N is the number of the RIS elements, whereas previously published results achieve this in KN or 2N number of steps where K is the number of discrete phases, e.g., [1], [2]. Thus, for a discrete-phase RIS, the techniques presented in this paper achieve the optimum received power in the smallest number of steps published in the literature. In addition, in each of those N steps, the techniques presented in this paper determine only one or a small number of phase shifts with a simple elementwise update rule, which result in a substantial reduction of computation time, as compared to the algorithms in the literature, e.g., [2], [3].

Magnetic resonance imaging (MRI) using hyperpolarized noble gases provides a way to visualize the structure and function of human lung, but the long imaging time limits its broad research and clinical applications. Deep learning has demonstrated great potential for accelerating MRI by reconstructing images from undersampled data. However, most existing deep conventional neural networks (CNN) directly apply square convolution to k-space data without considering the inherent properties of k-space sampling, limiting k-space learning efficiency and image reconstruction quality. In this work, we propose an encoding enhanced (EN2) complex CNN for highly undersampled pulmonary MRI reconstruction. EN2 employs convolution along either the frequency or phase-encoding direction, resembling the mechanisms of k-space sampling, to maximize the utilization of the encoding correlation and integrity within a row or column of k-space. We also employ complex convolution to learn rich representations from the complex k-space data. In addition, we develop a feature-strengthened modularized unit to further boost the reconstruction performance. Experiments demonstrate that our approach can accurately reconstruct hyperpolarized 129Xe and 1H lung MRI from 6-fold undersampled k-space data and provide lung function measurements with minimal biases compared with fully-sampled image. These results demonstrate the effectiveness of the proposed algorithmic components and indicate that the proposed approach could be used for accelerated pulmonary MRI in research and clinical lung disease patient care.

Sensor arrays play a significant role in direction of arrival (DOA) estimation. Specifically, arrays with low redundancy and reduced mutual coupling are desirable. In this paper, we investigate a sensor array configuration that has a restricted sensor spacing and propose a closed-form expression. We also propose several classes of low redundancy (LR) arrays. Interestingly, compared with super nested arrays (SNA) and maximum inter-element spacing constraint (MISC) arrays, one of the proposed arrays has a significant reduction in both redundancy ratio and mutual coupling. Numerical simulations are also conducted to verify the superiority of the proposed array over the known sparse arrays in terms of weight functions, mutual coupling matrices as well and DOA estimation performance.

We address the reflection optimization problem for a reconfigurable intelligent surface (RIS), where the RIS elements feature a set of non-uniformly spaced discrete phase shifts. This is motivated by the actual behavior of practical RIS elements, where it is shown that a uniform phase shift assumption is not realistic. A problem is formulated to find the optimal refection amplitudes and reflection phase shifts of the RIS elements such that the channel capacity of the target user is maximized. We first prove that in the optimal configuration, each RIS element is either turned off or operates at maximum amplitude. We then develop a method that finds the optimal reflection amplitudes and phases with complexity linear in the number of RIS elements. Some new and interesting insight into the reflection optimization problem is also provided.

In this paper, we propose a method to avoid "no-solution" situations of the control barrier function (CBF) for distributed collision avoidance in a multiagent autonomous robotic system (MARS). MARS, which is composed of distributed autonomous mobile robots, is expected to effectively perform cooperative tasks such as searching in a certain area. Therefore, collision avoidance must be considered when implementing MARS in the real world. The CBF is effective for solving collision-avoidance problems. However, in extreme conditions where many robots congregate at one location, the CBF constraints that ensure a safe distance between robots may be violated. We theoretically demonstrate that this problem can occur in certain situations, and introduce an asymmetric design for the inequality constraints of CBF. We asymmetrically decentralized inequality constraints with weight functions using the absolute speed of the robot so that other robots can take over the constraints of the robot in severe condition. We demonstrate the effectiveness of the proposed method in a two-dimensional situation wherein multiple robots congregate at one location. We implement the proposed method on real robots and the confirmed the effectiveness of this theory.

Fast inverse kinematics (IK) is a central component in robotic motion planning. For complex robots, IK methods are often based on root search and non-linear optimization algorithms. These algorithms can be massively sped up using a neural network to predict a good initial guess, which can then be refined in a few numerical iterations. Besides previous work on learning-based IK, we present a learning approach for the fundamentally more complex problem of IK with collision avoidance. We do this in diverse and previously unseen environments. From a detailed analysis of the IK learning problem, we derive a network and unsupervised learning architecture that removes the need for a sample data generation step. Using the trained network's prediction as an initial guess for a two-stage Jacobian-based solver allows for fast and accurate computation of the collision-free IK. For the humanoid robot, Agile Justin (19 DoF), the collision-free IK is solved in less than 10 milliseconds (on a single CPU core) and with an accuracy of 10^-4 m and 10^-3 rad based on a high-resolution world model generated from the robot's integrated 3D sensor. Our method massively outperforms a random multi-start baseline in a benchmark with the 19 DoF humanoid and challenging 3D environments. It requires ten times less training time than a supervised training method while achieving comparable results.

Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司