We consider systems of polynomial equations and inequalities in $\mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]$ where $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots,y_t)$. The $\boldsymbol{y}$ indeterminates are considered as parameters and we assume that when specialising them generically, the set of common complex solutions, to the obtained equations, is finite. We consider the problem of real root classification for such parameter-dependent problems, i.e. identifying the possible number of real solutions depending on the values of the parameters and computing a description of the regions of the space of parameters over which the number of real roots remains invariant. We design an algorithm for solving this problem. The formulas it outputs enjoy a determinantal structure. Under genericity assumptions, we show that its arithmetic complexity is polynomial in both the maximum degree $d$ and the number $s$ of the input inequalities and exponential in $nt+t^2$. The output formulas consist of polynomials of degree bounded by $(2s+n)d^{n+1}$. This is the first algorithm with such a singly exponential complexity. We report on practical experiments showing that a first implementation of this algorithm can tackle examples which were previously out of reach.
In this paper we consider the problem of estimating the $f$-moment ($\sum_{v\in [n]} (f(\mathbf{x}(v))-f(0))$) of a dynamic vector $\mathbf{x}\in \mathbb{G}^n$ over some abelian group $(\mathbb{G},+)$, where the $\|f\|_\infty$ norm is bounded. We propose a simple sketch and new estimation framework based on the \emph{Fourier transform} of $f$. I.e., we decompose $f$ into a linear combination of homomorphisms $f_1,f_2,\ldots$ from $(\mathbb{G},+)$ to $(\mathbb{C},\times)$, estimate the $f_k$-moment for each $f_k$, and synthesize them to obtain an estimate of the $f$-moment. Our estimators are asymptotically unbiased and have variance asymptotic to $\|\mathbf{x}\|_0^2 (\|f\|_\infty^2 m^{-1} + \|\hat{f}\|_1^2 m^{-2})$, where the size of the sketch is $O(m\log n\log|\mathbb{G}|)$ bits. When $\mathbb{G}=\mathbb{Z}$ this problem can also be solved using off-the-shelf $\ell_0$-samplers with space $O(m\log^2 n)$ bits, which does not obviously generalize to finite groups. As a concrete benchmark, we extend Ganguly, Garofalakis, and Rastogi's singleton-detector-based sampler to work over $\mathbb{G}$ using $O(m\log n\log|\mathbb{G}|\log(m\log n))$ bits. We give some experimental evidence that the Fourier-based estimation framework is significantly more accurate than sampling-based approaches at the same memory footprint.
We consider finite element approximations of ill-posed elliptic problems with conditional stability. The notion of {\emph{optimal error estimates}} is defined including both convergence with respect to mesh parameter and perturbations in data. The rate of convergence is determined by the conditional stability of the underlying continuous problem and the polynomial order of the finite element approximation space. A proof is given that no finite element approximation can converge at a better rate than that given by the definition, justifying the concept. A recently introduced class of finite element methods with weakly consistent regularisation is recalled and the associated error estimates are shown to be quasi optimal in the sense of our definition.
We give an almost complete characterization of the hardness of $c$-coloring $\chi$-chromatic graphs with distributed algorithms, for a wide range of models of distributed computing. In particular, we show that these problems do not admit any distributed quantum advantage. To do that: 1) We give a new distributed algorithm that finds a $c$-coloring in $\chi$-chromatic graphs in $\tilde{\mathcal{O}}(n^{\frac{1}{\alpha}})$ rounds, with $\alpha = \bigl\lfloor\frac{c-1}{\chi - 1}\bigr\rfloor$. 2) We prove that any distributed algorithm for this problem requires $\Omega(n^{\frac{1}{\alpha}})$ rounds. Our upper bound holds in the classical, deterministic LOCAL model, while the near-matching lower bound holds in the non-signaling model. This model, introduced by Arfaoui and Fraigniaud in 2014, captures all models of distributed graph algorithms that obey physical causality; this includes not only classical deterministic LOCAL and randomized LOCAL but also quantum-LOCAL, even with a pre-shared quantum state. We also show that similar arguments can be used to prove that, e.g., 3-coloring 2-dimensional grids or $c$-coloring trees remain hard problems even for the non-signaling model, and in particular do not admit any quantum advantage. Our lower-bound arguments are purely graph-theoretic at heart; no background on quantum information theory is needed to establish the proofs.
Given a hypergraph $\mathcal{H}$, the dual hypergraph of $\mathcal{H}$ is the hypergraph of all minimal transversals of $\mathcal{H}$. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, etc. In this paper we study conformality of dual hypergraphs and prove several results related to the problem of recognizing this property. In particular, we show that the problem is in co-NP and can be solved in polynomial time for hypergraphs of bounded dimension. In the special case of dimension $3$, we reduce the problem to $2$-Satisfiability. Our approach has an implication in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most $k$, for any fixed $k$.
Parameters of differential equations are essential to characterize intrinsic behaviors of dynamic systems. Numerous methods for estimating parameters in dynamic systems are computationally and/or statistically inadequate, especially for complex systems with general-order differential operators, such as motion dynamics. This article presents Green's matching, a computationally tractable and statistically efficient two-step method, which only needs to approximate trajectories in dynamic systems but not their derivatives due to the inverse of differential operators by Green's function. This yields a statistically optimal guarantee for parameter estimation in general-order equations, a feature not shared by existing methods, and provides an efficient framework for broad statistical inferences in complex dynamic systems.
We consider the problem of approximating a function from $L^2$ by an element of a given $m$-dimensional space $V_m$, associated with some feature map $\varphi$, using evaluations of the function at random points $x_1,\dots,x_n$. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features $\varphi(x_i)$. We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples $n = O(m\log(m))$, that means that the expected $L^2$ error is bounded by a constant times the best approximation error in $L^2$. Also, further assuming that the function is in some normed vector space $H$ continuously embedded in $L^2$, we further prove that the approximation is almost surely bounded by the best approximation error measured in the $H$-norm. This includes the cases of functions from $L^\infty$ or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
Non-classical generalizations of classical modal logic have been developed in the contexts of constructive mathematics and natural language semantics. In this paper, we discuss a general approach to the semantics of non-classical modal logics via algebraic representation theorems. We begin with complete lattices $L$ equipped with an antitone operation $\neg$ sending $1$ to $0$, a completely multiplicative operation $\Box$, and a completely additive operation $\Diamond$. Such lattice expansions can be represented by means of a set $X$ together with binary relations $\vartriangleleft$, $R$, and $Q$, satisfying some first-order conditions, used to represent $(L,\neg)$, $\Box$, and $\Diamond$, respectively. Indeed, any lattice $L$ equipped with such a $\neg$, a multiplicative $\Box$, and an additive $\Diamond$ embeds into the lattice of propositions of a frame $(X,\vartriangleleft,R,Q)$. Building on our recent study of "fundamental logic", we focus on the case where $\neg$ is dually self-adjoint ($a\leq \neg b$ implies $b\leq\neg a$) and $\Diamond \neg a\leq\neg\Box a$. In this case, the representations can be constrained so that $R=Q$, i.e., we need only add a single relation to $(X,\vartriangleleft)$ to represent both $\Box$ and $\Diamond$. Using these results, we prove that a system of fundamental modal logic is sound and complete with respect to an elementary class of bi-relational structures $(X,\vartriangleleft, R)$.
In a 2005 paper, Casacuberta, Scevenels and Smith construct a homotopy idempotent functor $E$ on the category of simplicial sets with the property that whether it can be expressed as localization with respect to a map $f$ is independent of the ZFC axioms. We show that this construction can be carried out in homotopy type theory. More precisely, we give a general method of associating to a suitable (possibly large) family of maps, a reflective subuniverse of any universe $\mathcal{U}$. When specialized to an appropriate family, this produces a localization which when interpreted in the $\infty$-topos of spaces agrees with the localization corresponding to $E$. Our approach generalizes the approach of [CSS] in two ways. First, by working in homotopy type theory, our construction can be interpreted in any $\infty$-topos. Second, while the local objects produced by [CSS] are always 1-types, our construction can produce $n$-types, for any $n$. This is new, even in the $\infty$-topos of spaces. In addition, by making use of universes, our proof is very direct. Along the way, we prove many results about "small" types that are of independent interest. As an application, we give a new proof that separated localizations exist. We also give results that say when a localization with respect to a family of maps can be presented as localization with respect to a single map, and show that the simplicial model satisfies a strong form of the axiom of choice which implies that sets cover and that the law of excluded middle holds.
We investigate the extremality of stabilizer states to reveal their exceptional role in the space of all $n$-qubit/qudit states. We establish uncertainty principles for the characteristic function and the Wigner function of states, respectively. We find that only stabilizer states achieve saturation in these principles. Furthermore, we prove a general theorem that stabilizer states are extremal for convex information measures invariant under local unitaries. We explore this extremality in the context of various quantum information and correlation measures, including entanglement entropy, conditional entropy and other entanglement measures. Additionally, leveraging the recent discovery that stabilizer states are the limit states under quantum convolution, we establish the monotonicity of the entanglement entropy and conditional entropy under quantum convolution. These results highlight the remarkable information-theoretic properties of stabilizer states. Their extremality provides valuable insights into their ability to capture information content and correlations, paving the way for further exploration of their potential in quantum information processing.
Although the asymptotic properties of the parameter estimator have been derived in the $p_{0}$ model for directed graphs with the differentially private bi-degree sequence, asymptotic theory in general models is still lacking. In this paper, we release the bi-degree sequence of directed graphs via the discrete Laplace mechanism, which satisfies differential privacy. We use the moment method to estimate the unknown model parameter. We establish a unified asymptotic result, in which consistency and asymptotic normality of the differentially private estimator holds. We apply the unified theoretical result to the Probit model. Simulations and a real data demonstrate our theoretical findings.