Recent advancements in Large Language Models (LLMs) such as GPT4 have displayed exceptional multi-modal capabilities in following open-ended instructions given images. However, the performance of these models heavily relies on design choices such as network structures, training data, and training strategies, and these choices have not been extensively discussed in the literature, making it difficult to quantify progress in this field. To address this issue, this paper presents a systematic and comprehensive study, quantitatively and qualitatively, on training such models. We implement over 20 variants with controlled settings. Concretely, for network structures, we compare different LLM backbones and model designs. For training data, we investigate the impact of data and sampling strategies. For instructions, we explore the influence of diversified prompts on the instruction-following ability of the trained models. For benchmarks, we contribute the first, to our best knowledge, comprehensive evaluation set including both image and video tasks through crowd-sourcing. Based on our findings, we present Lynx, which performs the most accurate multi-modal understanding while keeping the best multi-modal generation ability compared to existing open-sourced GPT4-style models.
The swift advancement in the scale and capabilities of Large Language Models (LLMs) positions them as promising tools for a variety of downstream tasks. In addition to the pursuit of better performance and the avoidance of violent feedback on a certain prompt, to ensure the responsibility of the LLM, much attention is drawn to the robustness of LLMs. However, existing evaluation methods mostly rely on traditional question answering datasets with predefined supervised labels, which do not align with the superior generation capabilities of contemporary LLMs. To address this issue, we propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools to evaluate the robustness of LLMs, which we refer to as the Reward Model for Reasonable Robustness Evaluation (TREvaL). Our extensive empirical experiments have demonstrated that TREval provides an accurate method for evaluating the robustness of an LLM, especially when faced with more challenging open questions. Furthermore, our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations, which are commonplace in daily language usage. Notably, we were surprised to discover that robustness tends to decrease as fine-tuning (SFT and RLHF) is conducted. The code of TREval is available in //github.com/Harry-mic/TREval.
With recent advances in generative AI, conversational models like ChatGPT have become feasible candidates for TAs. We investigate the practicality of using generative AI as TAs in introductory programming education by examining novice learners' interaction with TAs in a subgoal learning environment. To compare the learners' interaction and perception of the AI and human TAs, we conducted a between-subject study with 20 novice programming learners. Learners solve programming tasks by producing subgoals and subsolutions with the guidance of a TA. Our study shows that learners can solve tasks faster with comparable scores with AI TAs. Learners' perception of the AI TA is on par with that of human TAs in terms of speed and comprehensiveness of the replies and helpfulness, difficulty, and satisfaction of the conversation. Finally, we suggest guidelines to better design and utilize generative AI as TAs in programming education from the result of our chat log analysis.
Multi-channel speech enhancement extracts speech using multiple microphones that capture spatial cues. Effectively utilizing directional information is key for multi-channel enhancement. Deep learning shows great potential on multi-channel speech enhancement and often takes short-time Fourier Transform (STFT) as inputs directly. To fully leverage the spatial information, we introduce a method using spherical harmonics transform (SHT) coefficients as auxiliary model inputs. These coefficients concisely represent spatial distributions. Specifically, our model has two encoders, one for the STFT and another for the SHT. By fusing both encoders in the decoder to estimate the enhanced STFT, we effectively incorporate spatial context. Evaluations on TIMIT under varying noise and reverberation show our model outperforms established benchmarks. Remarkably, this is achieved with fewer computations and parameters. By leveraging spherical harmonics to incorporate directional cues, our model efficiently improves the performance of the multi-channel speech enhancement.
Large Language Models (LLMs) have consistently showcased remarkable generalization capabilities when applied to various language tasks. Nonetheless, harnessing the full potential of LLMs for Radiology Report Generation (R2Gen) still presents a challenge, stemming from the inherent disparity in modality between LLMs and the R2Gen task. To bridge this gap effectively, we propose R2GenGPT, which is a novel solution that aligns visual features with the word embedding space of LLMs using an efficient visual alignment module. This innovative approach empowers the previously static LLM to seamlessly integrate and process image information, marking a step forward in optimizing R2Gen performance. R2GenGPT offers the following benefits. First, it attains state-of-the-art (SOTA) performance by training only the lightweight visual alignment module while freezing all the parameters of LLM. Second, it exhibits high training efficiency, as it requires the training of an exceptionally minimal number of parameters while achieving rapid convergence. By employing delta tuning, our model only trains 5M parameters (which constitute just 0.07\% of the total parameter count) to achieve performance close to the SOTA levels. Our code is available at //github.com/wang-zhanyu/R2GenGPT.
Recent advancements in Automatic Speech Recognition (ASR) systems, exemplified by Whisper, have demonstrated the potential of these systems to approach human-level performance given sufficient data. However, this progress doesn't readily extend to ASR for children due to the limited availability of suitable child-specific databases and the distinct characteristics of children's speech. A recent study investigated leveraging the My Science Tutor (MyST) children's speech corpus to enhance Whisper's performance in recognizing children's speech. They were able to demonstrate some improvement on a limited testset. This paper builds on these findings by enhancing the utility of the MyST dataset through more efficient data preprocessing. We reduce the Word Error Rate (WER) on the MyST testset 13.93% to 9.11% with Whisper-Small and from 13.23% to 8.61% with Whisper-Medium and show that this improvement can be generalized to unseen datasets. We also highlight important challenges towards improving children's ASR performance. The results showcase the viable and efficient integration of Whisper for effective children's speech recognition.
Customizing machine translation models to comply with fine-grained attributes such as formality has seen tremendous progress recently. However, current approaches mostly rely on at least some supervised data with attribute annotation. Data scarcity therefore remains a bottleneck to democratizing such customization possibilities to a wider range of languages, lower-resource ones in particular. Given recent progress in pretrained massively multilingual translation models, we use them as a foundation to transfer the attribute controlling capabilities to languages without supervised data. In this work, we present a comprehensive analysis of transferring attribute controllers based on a pretrained NLLB-200 model. We investigate both training- and inference-time control techniques under various data scenarios, and uncover their relative strengths and weaknesses in zero-shot performance and domain robustness. We show that both paradigms are complementary, as shown by consistent improvements on 5 zero-shot directions. Moreover, a human evaluation on a real low-resource language, Bengali, confirms our findings on zero-shot transfer to new target languages. The code is $\href{//github.com/dannigt/attribute-controller-transfer}{\text{here}}$.
We propose a 3D generation pipeline that uses diffusion models to generate realistic human digital avatars. Due to the wide variety of human identities, poses, and stochastic details, the generation of 3D human meshes has been a challenging problem. To address this, we decompose the problem into 2D normal map generation and normal map-based 3D reconstruction. Specifically, we first simultaneously generate realistic normal maps for the front and backside of a clothed human, dubbed dual normal maps, using a pose-conditional diffusion model. For 3D reconstruction, we "carve" the prior SMPL-X mesh to a detailed 3D mesh according to the normal maps through mesh optimization. To further enhance the high-frequency details, we present a diffusion resampling scheme on both body and facial regions, thus encouraging the generation of realistic digital avatars. We also seamlessly incorporate a recent text-to-image diffusion model to support text-based human identity control. Our method, namely, Chupa, is capable of generating realistic 3D clothed humans with better perceptual quality and identity variety.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.
Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.