In recent years, deep models have achieved remarkable success in various vision tasks. However, their performance heavily relies on large training datasets. In contrast, humans exhibit hybrid learning, seamlessly integrating structured knowledge for cross-domain recognition or relying on a smaller amount of data samples for few-shot learning. Motivated by this human-like epistemic process, we aim to extend hybrid learning to computer vision tasks by integrating structured knowledge with data samples for more effective representation learning. Nevertheless, this extension faces significant challenges due to the substantial gap between structured knowledge and deep features learned from data samples, encompassing both dimensions and knowledge granularity. In this paper, a novel Epistemic Graph Layer (EGLayer) is introduced to enable hybrid learning, enhancing the exchange of information between deep features and a structured knowledge graph. Our EGLayer is composed of three major parts, including a local graph module, a query aggregation model, and a novel correlation alignment loss function to emulate human epistemic ability. Serving as a plug-and-play module that can replace the standard linear classifier, EGLayer significantly improves the performance of deep models. Extensive experiments demonstrates that EGLayer can greatly enhance representation learning for the tasks of cross-domain recognition and few-shot learning, and the visualization of knowledge graphs can aid in model interpretation.
In recent years, the performance of point cloud models has been rapidly improved. However, due to the limited amount of relevant explainability studies, the unreliability and opacity of these black-box models may lead to potential risks in applications where human lives are at stake, e.g. autonomous driving or healthcare. This work proposes a DDPM-based point cloud global explainability method (DAM) that leverages Point Diffusion Transformer (PDT), a novel point-wise symmetric model, with dual-classifier guidance to generate high-quality global explanations. In addition, an adapted path gradient integration method for DAM is proposed, which not only provides a global overview of the saliency maps for point cloud categories, but also sheds light on how the attributions of the explanations vary during the generation process. Extensive experiments indicate that our method outperforms existing ones in terms of perceptibility, representativeness, and diversity, with a significant reduction in generation time. Our code is available at: //github.com/Explain3D/DAM
Recently, Graph Neural Network (GNN)-based vulnerability detection systems have achieved remarkable success. However, the lack of explainability poses a critical challenge to deploy black-box models in security-related domains. For this reason, several approaches have been proposed to explain the decision logic of the detection model by providing a set of crucial statements positively contributing to its predictions. Unfortunately, due to the weakly-robust detection models and suboptimal explanation strategy, they have the danger of revealing spurious correlations and redundancy issue. In this paper, we propose Coca, a general framework aiming to 1) enhance the robustness of existing GNN-based vulnerability detection models to avoid spurious explanations; and 2) provide both concise and effective explanations to reason about the detected vulnerabilities. \sysname consists of two core parts referred to as Trainer and Explainer. The former aims to train a detection model which is robust to random perturbation based on combinatorial contrastive learning, while the latter builds an explainer to derive crucial code statements that are most decisive to the detected vulnerability via dual-view causal inference as explanations. We apply Coca over three typical GNN-based vulnerability detectors. Experimental results show that Coca can effectively mitigate the spurious correlation issue, and provide more useful high-quality explanations.
Machine Learning (ML) has emerged as one of data science's most transformative and influential domains. However, the widespread adoption of ML introduces privacy-related concerns owing to the increasing number of malicious attacks targeting ML models. To address these concerns, Privacy-Preserving Machine Learning (PPML) methods have been introduced to safeguard the privacy and security of ML models. One such approach is the use of Homomorphic Encryption (HE). However, the significant drawbacks and inefficiencies of traditional HE render it impractical for highly scalable scenarios. Fortunately, a modern cryptographic scheme, Hybrid Homomorphic Encryption (HHE), has recently emerged, combining the strengths of symmetric cryptography and HE to surmount these challenges. Our work seeks to introduce HHE to ML by designing a PPML scheme tailored for end devices. We leverage HHE as the fundamental building block to enable secure learning of classification outcomes over encrypted data, all while preserving the privacy of the input data and ML model. We demonstrate the real-world applicability of our construction by developing and evaluating an HHE-based PPML application for classifying heart disease based on sensitive ECG data. Notably, our evaluations revealed a slight reduction in accuracy compared to inference on plaintext data. Additionally, both the analyst and end devices experience minimal communication and computation costs, underscoring the practical viability of our approach. The successful integration of HHE into PPML provides a glimpse into a more secure and privacy-conscious future for machine learning on relatively constrained end devices.
Existing learning-based solutions to medical image segmentation have two important shortcomings. First, for most new segmentation task, a new model has to be trained or fine-tuned. This requires extensive resources and machine learning expertise, and is therefore often infeasible for medical researchers and clinicians. Second, most existing segmentation methods produce a single deterministic segmentation mask for a given image. In practice however, there is often considerable uncertainty about what constitutes the correct segmentation, and different expert annotators will often segment the same image differently. We tackle both of these problems with Tyche, a model that uses a context set to generate stochastic predictions for previously unseen tasks without the need to retrain. Tyche differs from other in-context segmentation methods in two important ways. (1) We introduce a novel convolution block architecture that enables interactions among predictions. (2) We introduce in-context test-time augmentation, a new mechanism to provide prediction stochasticity. When combined with appropriate model design and loss functions, Tyche can predict a set of plausible diverse segmentation candidates for new or unseen medical images and segmentation tasks without the need to retrain.
Deep models, e.g., CNNs and Vision Transformers, have achieved impressive achievements in many vision tasks in the closed world. However, novel classes emerge from time to time in our ever-changing world, requiring a learning system to acquire new knowledge continually. For example, a robot needs to understand new instructions, and an opinion monitoring system should analyze emerging topics every day. Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally and build a universal classifier among all seen classes. Correspondingly, when directly training the model with new class instances, a fatal problem occurs -- the model tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades. There have been numerous efforts to tackle catastrophic forgetting in the machine learning community. In this paper, we survey comprehensively recent advances in deep class-incremental learning and summarize these methods from three aspects, i.e., data-centric, model-centric, and algorithm-centric. We also provide a rigorous and unified evaluation of 16 methods in benchmark image classification tasks to find out the characteristics of different algorithms empirically. Furthermore, we notice that the current comparison protocol ignores the influence of memory budget in model storage, which may result in unfair comparison and biased results. Hence, we advocate fair comparison by aligning the memory budget in evaluation, as well as several memory-agnostic performance measures. The source code to reproduce these evaluations is available at //github.com/zhoudw-zdw/CIL_Survey/
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.
We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.