Accurate nutrition estimation helps people make informed dietary choices and is essential in the prevention of serious health complications. We present NutriBench, the first publicly available natural language meal description nutrition benchmark. NutriBench consists of 11,857 meal descriptions generated from real-world global dietary intake data. The data is human-verified and annotated with macro-nutrient labels, including carbohydrates, proteins, fats, and calories. We conduct an extensive evaluation of NutriBench on the task of carbohydrate estimation, testing twelve leading Large Language Models (LLMs), including GPT-4o, Llama3.1, Qwen2, Gemma2, and OpenBioLLM models, using standard, Chain-of-Thought and Retrieval-Augmented Generation strategies. Additionally, we present a study involving professional nutritionists, finding that LLMs can provide more accurate and faster estimates. Finally, we perform a real-world risk assessment by simulating the effect of carbohydrate predictions on the blood glucose levels of individuals with diabetes. Our work highlights the opportunities and challenges of using LLMs for nutrition estimation, demonstrating their potential to aid professionals and laypersons and improve health outcomes. Our benchmark is publicly available at: //mehak126.github.io/nutribench.html
Large language models (LLMs) have shown promising capabilities in healthcare analysis but face several challenges like hallucinations, parroting, and bias manifestation. These challenges are exacerbated in complex, sensitive, and low-resource domains. Therefore, in this work we introduce IC-AnnoMI, an expert-annotated motivational interviewing (MI) dataset built upon AnnoMI by generating in-context conversational dialogues leveraging LLMs, particularly ChatGPT. IC-AnnoMI employs targeted prompts accurately engineered through cues and tailored information, taking into account therapy style (empathy, reflection), contextual relevance, and false semantic change. Subsequently, the dialogues are annotated by experts, strictly adhering to the Motivational Interviewing Skills Code (MISC), focusing on both the psychological and linguistic dimensions of MI dialogues. We comprehensively evaluate the IC-AnnoMI dataset and ChatGPT's emotional reasoning ability and understanding of domain intricacies by modeling novel classification tasks employing several classical machine learning and current state-of-the-art transformer approaches. Finally, we discuss the effects of progressive prompting strategies and the impact of augmented data in mitigating the biases manifested in IC-AnnoM. Our contributions provide the MI community with not only a comprehensive dataset but also valuable insights for using LLMs in empathetic text generation for conversational therapy in supervised settings.
Many laypeople are motivated to improve the health behavior of their family or friends but do not know where to start, especially if the health behavior is potentially stigmatizing or controversial. We present an approach that uses virtual agents to coach community-based volunteers in health counseling techniques, such as motivational interviewing, and allows them to practice these skills in role-playing scenarios. We use this approach in a virtual agent-based system to increase COVID-19 vaccination by empowering users to influence their social network. In a between-subjects comparative design study, we test the effects of agent system interactivity and role-playing functionality on counseling outcomes, with participants evaluated by standardized patients and objective judges. We find that all versions are effective at producing peer counselors who score adequately on a standardized measure of counseling competence, and that participants were significantly more satisfied with interactive virtual agents compared to passive viewing of the training material. We discuss design implications for interpersonal skills training systems based on our findings.
Public policies and medical interventions often involve dynamics in their treatment assignments, where individuals receive a series of interventions over multiple stages. We study the statistical learning of optimal dynamic treatment regimes (DTRs) that guide the optimal treatment assignment for each individual at each stage based on the individual's evolving history. We propose a doubly robust, classification-based approach to learning the optimal DTR using observational data under the assumption of sequential ignorability. This approach learns the optimal DTR through backward induction. At each step, it constructs an augmented inverse probability weighting (AIPW) estimator of the policy value function and maximizes it to learn the optimal policy for the corresponding stage. We show that the resulting DTR can achieve an optimal convergence rate of $n^{-1/2}$ for welfare regret under mild convergence conditions on estimators of the nuisance components.
Eating disorders (ED) are complex mental health conditions that require long-term management and support. Recent advancements in large language model (LLM)-based chatbots offer the potential to assist individuals in receiving immediate support. Yet, concerns remain about their reliability and safety in sensitive contexts such as ED. We explore the opportunities and potential harms of using LLM-based chatbots for ED recovery. We observe the interactions between 26 participants with ED and an LLM-based chatbot, WellnessBot, designed to support ED recovery, over 10 days. We discovered that our participants have felt empowered in recovery by discussing ED-related stories with the chatbot, which served as a personal yet social avenue. However, we also identified harmful chatbot responses, especially concerning individuals with ED, that went unnoticed partly due to participants' unquestioning trust in the chatbot's reliability. Based on these findings, we provide design implications for safe and effective LLM-based interventions in ED management.
As learning-based methods for legged robots rapidly grow in popularity, it is important that we can provide safety assurances efficiently across different controllers and environments. Existing works either rely on a priori knowledge of the environment and safety constraints to ensure system safety or provide assurances for a specific locomotion policy. To address these limitations, we propose an observation-conditioned reachability-based (OCR) safety-filter framework. Our key idea is to use an OCR value network (OCR-VN) that predicts the optimal control-theoretic safety value function for new failure regions and dynamic uncertainty during deployment time. Specifically, the OCR-VN facilitates rapid safety adaptation through two key components: a LiDAR-based input that allows the dynamic construction of safe regions in light of new obstacles and a disturbance estimation module that accounts for dynamics uncertainty in the wild. The predicted safety value function is used to construct an adaptive safety filter that overrides the nominal quadruped controller when necessary to maintain safety. Through simulation studies and hardware experiments on a Unitree Go1 quadruped, we demonstrate that the proposed framework can automatically safeguard a wide range of hierarchical quadruped controllers, adapts to novel environments, and is robust to unmodeled dynamics without a priori access to the controllers or environments - hence, "One Filter to Deploy Them All". The experiment videos can be found on the project website.
Respiratory rate is a vital sign indicating various health conditions. Traditional contact-based measurement methods are often uncomfortable, and alternatives like respiratory belts and smartwatches have limitations in cost and operability. Therefore, a non-contact method based on Pixel Intensity Changes (PIC) with RGB camera images is proposed. Experiments involved 3 sizes of bounding boxes, 3 filter options (Laplacian, Sobel, and no filter), and 2 corner detection algorithms (ShiTomasi and Harris), with tracking using the Lukas-Kanade algorithm. Eighteen configurations were tested on 67 subjects in static and dynamic conditions. The best results in static conditions were achieved with the Medium Bounding box, Sobel Filter, and Harris Method (MAE: 0.85, RMSE: 1.49). In dynamic conditions, the Large Bounding box with no filter and ShiTomasi, and Medium Bounding box with no filter and Harris, produced the lowest MAE (0.81) and RMSE (1.35)
Digital healthcare systems have revolutionized medical services, facilitating provider collaboration, enhancing diagnosis, and optimizing and improving treatments. They deliver superior quality, faster, reliable, and cost-effective services. Researchers are addressing pressing health challenges by integrating information technology, computing resources, and digital health records. However, digitizing healthcare introduces significant risks to patient data privacy and security, with the potential for unauthorized access to protected health information. Although patients can authorize data access through consent, there is a pressing need for mechanisms to ensure such given consent is informed and executed properly and timely. Patients deserve transparency and accountability regarding the access to their data: who access it, when, and under what circumstances. Current healthcare systems, often centralized, leave much to be desired in managing these concerns, leading to numerous security incidents. To address these issues, we propose a system based on blockchain and smart contracts for managing informed consent for accessing health records by the treatment team members, incorporating safeguards to verify that consent processes are correctly executed. Blockchain's inherent immutability ensures the integrity of consent. Smart contracts automatically execute agreements, enhancing accountability. They provide a robust framework for protecting patient privacy in the digital age. Experimental evaluations show that the proposed approach can be integrated easily with the existing healthcare systems without incurring financial and technological challenges.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.