亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) have achieved remarkable progress in solving various natural language processing tasks due to emergent reasoning abilities. However, LLMs have inherent limitations as they are incapable of accessing up-to-date information (stored on the Web or in task-specific knowledge bases), using external tools, and performing precise mathematical and logical reasoning. In this paper, we present Chameleon, an AI system that mitigates these limitations by augmenting LLMs with plug-and-play modules for compositional reasoning. Chameleon synthesizes programs by composing various tools (e.g., LLMs, off-the-shelf vision models, web search engines, Python functions, and heuristic-based modules) for accomplishing complex reasoning tasks. At the heart of Chameleon is an LLM-based planner that assembles a sequence of tools to execute to generate the final response. We showcase the effectiveness of Chameleon on two multi-modal knowledge-intensive reasoning tasks: ScienceQA and TabMWP. Chameleon, powered by GPT-4, achieves an 86.54% overall accuracy on ScienceQA, improving the best published few-shot result by 11.37%. On TabMWP, GPT-4-powered Chameleon improves the accuracy by 17.0%, lifting the state of the art to 98.78%. Our analysis also shows that the GPT-4-powered planner exhibits more consistent and rational tool selection via inferring potential constraints from instructions, compared to a ChatGPT-powered planner. The project is available at //chameleon-llm.github.io.

相關內容

Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities, which encourages extensive research on their application in mathematical problem solving. However, current work has been largely focused on text-based mathematical problems, with limited investigation in problems involving geometric information. Addressing this gap, we aim to enable LLMs to solve geometric problems by understanding image input. We first analyze the limitations of current Multimodal Large Language Models (MLLMs) in this area: they struggle to accurately comprehending basic geometric elements and their relationships. To overcome these challenges, we take advantage of the unique characteristics of geometric problems (such as unique geometric logical form, and geometric scalability) and the capacity of the textual LLMs to build an enriched multimodal geometry dataset based on existing data. The augmented dataset, Geo170K, contains more than 170K geometric image-caption and question-answer pairs. Utilizing our constructed Geo170K dataset, we develop G-LLaVA, which demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.

We introduce SkipAnalyzer, a large language model (LLM)-powered tool for static code analysis. SkipAnalyzer has three components: 1) an LLM-based static bug detector that scans source code and reports specific types of bugs, 2) an LLM-based false-positive filter that can identify false-positive bugs in the results of static bug detectors (e.g., the result of step 1) to improve detection accuracy, and 3) an LLM-based patch generator that can generate patches for the detected bugs above. As a proof-of-concept, SkipAnalyzer is built on ChatGPT, which has exhibited outstanding performance in various software engineering tasks. To evaluate SkipAnalyzer, we focus on two types of typical and critical bugs that are targeted by static bug detection, i.e., Null Dereference and Resource Leak as subjects. We employ Infer to aid the gathering of these two bug types from 10 open-source projects. Consequently, our experiment dataset contains 222 instances of Null Dereference bugs and 46 instances of Resource Leak bugs. Our study demonstrates that SkipAnalyzer achieves remarkable performance in the mentioned static analysis tasks, including bug detection, false-positive warning removal, and bug repair. In static bug detection, SkipAnalyzer achieves accuracy values of up to 68.37% for detecting Null Dereference bugs and 76.95% for detecting Resource Leak bugs, improving the precision of the current leading bug detector, Infer, by 12.86% and 43.13%, respectively. For removing false-positive warnings, SkipAnalyzer can reach a precision of up to 93.88% for Null Dereference bugs and 63.33% for Resource Leak bugs. Additionally, SkipAnalyzer surpasses state-of-the-art false-positive warning removal tools. Furthermore, in bug repair, SkipAnalyzer can generate syntactically correct patches to fix its detected bugs with a success rate of up to 97.30%.

This paper explores preference distillation for large vision language models (LVLMs), improving their ability to generate helpful and faithful responses anchoring the visual context. We first build a vision-language feedback (VLFeedback) dataset utilizing AI annotation. Specifically, responses are generated by models sampled from 12 LVLMs, conditioned on multi-modal instructions sourced from various datasets. We adopt GPT-4V to assess the generated outputs regarding helpfulness, visual faithfulness, and ethical considerations. Furthermore, the preference supervision is distilled into Qwen-VL-Chat through the direct preference optimization (DPO) method. The resulting model Silkie, achieves 6.9% and 9.5% relative improvement on the MME benchmark regarding the perception and cognition capabilities, respectively. Silkie also demonstrates reduced hallucination by setting a new state-of-the-art score of 3.02 on the MMHal-Bench benchmark. Further analysis shows that DPO with our VLFeedback dataset mainly boosts the fine-grained perception and complex cognition abilities of LVLMs, leading to more comprehensive improvements compared to human-annotated preference datasets.

Recent advances in contrastive language-image pretraining (CLIP) have demonstrated strong capabilities in zero-shot classification by aligning visual representations with target text embeddings in an image level. However, in dense prediction tasks, CLIP often struggles to localize visual features within an image and fails to give accurate pixel-level predictions, which prevents it from functioning as a generalized visual foundation model. In this work, we aim to enhance CLIP's potential for semantic segmentation with minimal modifications to its pretrained models. By rethinking self-attention, we surprisingly find that CLIP can adapt to dense prediction tasks by simply introducing a novel Correlative Self-Attention (CSA) mechanism. Specifically, we replace the traditional self-attention block of CLIP vision encoder's last layer by our CSA module and reuse its pretrained projection matrices of query, key, and value, leading to a training-free adaptation approach for CLIP's zero-shot semantic segmentation. Extensive experiments show the advantage of CSA: we obtain a 38.2% average zero-shot mIoU across eight semantic segmentation benchmarks highlighted in this paper, significantly outperforming the existing SoTA's 33.9% and the vanilla CLIP's 14.1%.

The success of large language models has shifted the evaluation paradigms in natural language processing (NLP). The community's interest has drifted towards comparing NLP models across many tasks, domains, and datasets, often at an extreme scale. This imposes new engineering challenges: efforts in constructing datasets and models have been fragmented, and their formats and interfaces are incompatible. As a result, it often takes extensive (re)implementation efforts to make fair and controlled comparisons at scale. Catwalk aims to address these issues. Catwalk provides a unified interface to a broad range of existing NLP datasets and models, ranging from both canonical supervised training and fine-tuning, to more modern paradigms like in-context learning. Its carefully-designed abstractions allow for easy extensions to many others. Catwalk substantially lowers the barriers to conducting controlled experiments at scale. For example, we finetuned and evaluated over 64 models on over 86 datasets with a single command, without writing any code. Maintained by the AllenNLP team at the Allen Institute for Artificial Intelligence (AI2), Catwalk is an ongoing open-source effort: //github.com/allenai/catwalk.

Multimodal large language models (MLLMs) have recently achieved impressive general-purpose vision-language capabilities through visual instruction tuning. However, current MLLMs primarily focus on image-level or box-level understanding, falling short of achieving fine-grained vision-language alignment at the pixel level. Besides, the lack of mask-based instruction data limits their advancements. In this paper, we propose Osprey, a mask-text instruction tuning approach, to extend MLLMs by incorporating fine-grained mask regions into language instruction, aiming at achieving pixel-wise visual understanding. To achieve this goal, we first meticulously curate a mask-based region-text dataset with 724K samples, and then design a vision-language model by injecting pixel-level representation into LLM. Especially, Osprey adopts a convolutional CLIP backbone as the vision encoder and employs a mask-aware visual extractor to extract precise visual mask features from high resolution input. Experimental results demonstrate Osprey's superiority in various region understanding tasks, showcasing its new capability for pixel-level instruction tuning. In particular, Osprey can be integrated with Segment Anything Model (SAM) seamlessly to obtain multi-granularity semantics. The source code, dataset and demo can be found at //github.com/CircleRadon/Osprey.

Large language models (LLMs) have recently transformed both the academic and industrial landscapes due to their remarkable capacity to understand, analyze, and generate texts based on their vast knowledge and reasoning ability. Nevertheless, one major drawback of LLMs is their substantial computational cost for pre-training due to their unprecedented amounts of parameters. The disadvantage is exacerbated when new knowledge frequently needs to be introduced into the pre-trained model. Therefore, it is imperative to develop effective and efficient techniques to update pre-trained LLMs. Traditional methods encode new knowledge in pre-trained LLMs through direct fine-tuning. However, naively re-training LLMs can be computationally intensive and risks degenerating valuable pre-trained knowledge irrelevant to the update in the model. Recently, Knowledge-based Model Editing (KME) has attracted increasing attention, which aims to precisely modify the LLMs to incorporate specific knowledge, without negatively influencing other irrelevant knowledge. In this survey, we aim to provide a comprehensive and in-depth overview of recent advances in the field of KME. We first introduce a general formulation of KME to encompass different KME strategies. Afterward, we provide an innovative taxonomy of KME techniques based on how the new knowledge is introduced into pre-trained LLMs, and investigate existing KME strategies while analyzing key insights, advantages, and limitations of methods from each category. Moreover, representative metrics, datasets, and applications of KME are introduced accordingly. Finally, we provide an in-depth analysis regarding the practicality and remaining challenges of KME and suggest promising research directions for further advancement in this field.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

北京阿比特科技有限公司