亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article presents a new algorithm to compute all the roots of two families of polynomials that are of interest for the Mandelbrot set $\mathcal{M}$ : the roots of those polynomials are respectively the parameters $c\in\mathcal{M}$ associated with periodic critical dynamics for $f_c(z)=z^2+c$ (hyperbolic centers) or with pre-periodic dynamics (Misiurewicz-Thurston parameters). The algorithm is based on the computation of discrete level lines that provide excellent starting points for the Newton method. In practice, we observe that these polynomials can be split in linear time of the degree. This article is paired with a code library \citelib{MLib} that implements this algorithm. Using this library and about 723 000 core-hours on the HPC center \textit{Rom\'eo} (Reims), we have successfully found all hyperbolic centers of period $\leq 41$ and all Misiurewicz-Thurston parameters whose period and pre-period sum to $\leq 35$. Concretely, this task involves splitting a tera-polynomial, i.e. a polynomial of degree $\sim10^{12}$, which is orders of magnitude ahead of the previous state of the art. It also involves dealing with the certifiability of our numerical results, which is an issue that we address in detail, both mathematically and along the production chain. The certified database is available to the scientific community. For the smaller periods that can be represented using only hardware arithmetic (floating points FP80), the implementation of our algorithm can split the corresponding polynomials of degree $\sim10^{9}$ in less than one day-core. We complement these benchmarks with a statistical analysis of the separation of the roots, which confirms that no other polynomial in these families can be split without using higher precision arithmetic.

相關內容

We introduce a 2-dimensional stochastic dominance (2DSD) index to characterize both strict and almost stochastic dominance. Based on this index, we derive an estimator for the minimum violation ratio (MVR), also known as the critical parameter, of the almost stochastic ordering condition between two variables. We determine the asymptotic properties of the empirical 2DSD index and MVR for the most frequently used stochastic orders. We also provide conditions under which the bootstrap estimators of these quantities are strongly consistent. As an application, we develop consistent bootstrap testing procedures for almost stochastic dominance. The performance of the tests is checked via simulations and the analysis of real data.

We consider the problem of estimating log-determinants of large, sparse, positive definite matrices. A key focus of our algorithm is to reduce computational cost, and it is based on sparse approximate inverses. The algorithm can be implemented to be adaptive, and it uses graph spline approximation to improve accuracy. We illustrate our approach on classes of large sparse matrices.

The amount of information in satisfiability problem (SAT) is considered. SAT can be polynomial-time solvable when the solving algorithm holds an exponential amount of information. It is also established that SAT Kolmogorov complexity is constant. It is argued that the amount of information in SAT grows at least exponentially with the size of the input instance. The amount of information in SAT is compared with the amount of information in the fixed code algorithms and generated over runtime.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

Nowadays an ever-growing concerning phenomenon, the emergence of algorithmic biases that can lead to unfair models, emerges. Several debiasing approaches have been proposed in the realm of deep learning, employing more or less sophisticated approaches to discourage these models from massively employing these biases. However, a question emerges: is this extra complexity really necessary? Is a vanilla-trained model already embodying some ``unbiased sub-networks'' that can be used in isolation and propose a solution without relying on the algorithmic biases? In this work, we show that such a sub-network typically exists, and can be extracted from a vanilla-trained model without requiring additional training. We further validate that such specific architecture is incapable of learning a specific bias, suggesting that there are possible architectural countermeasures to the problem of biases in deep neural networks.

In recent works on the theory of machine learning, it has been observed that heavy tail properties of Stochastic Gradient Descent (SGD) can be studied in the probabilistic framework of stochastic recursions. In particular, G\"{u}rb\"{u}zbalaban et al. (arXiv:2006.04740) considered a setup corresponding to linear regression for which iterations of SGD can be modelled by a multivariate affine stochastic recursion $X_k=A_k X_{k-1}+B_k$, for independent and identically distributed pairs $(A_k, B_k)$, where $A_k$ is a random symmetric matrix and $B_k$ is a random vector. In this work, we will answer several open questions of the quoted paper and extend their results by applying the theory of irreducible-proximal (i-p) matrices.

The Bj\"orling problem amounts to the construction of a minimal surface from a real-analytic curve with a given real-analytic normal vector field. We approximate that solution locally by discrete minimal surfaces as special discrete isothermic surfaces (as defined by Bobenko and Pinkall in 1996). The main step in our construction is the approximation of the sought surface's Weierstrass data by discrete conformal maps. We prove that the approximation error is of the order of the square of the mesh size.

Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.

Mixed methods for linear elasticity with strongly symmetric stresses of lowest order are studied in this paper. On each simplex, the stress space has piecewise linear components with respect to its Alfeld split (which connects the vertices to barycenter), generalizing the Johnson-Mercier two-dimensional element to higher dimensions. Further reductions in the stress space in the three-dimensional case (to 24 degrees of freedom per tetrahedron) are possible when the displacement space is reduced to local rigid displacements. Proofs of optimal error estimates of numerical solutions and improved error estimates via postprocessing and the duality argument are presented.

Incomplete factorizations have long been popular general-purpose algebraic preconditioners for solving large sparse linear systems of equations. Guaranteeing the factorization is breakdown free while computing a high quality preconditioner is challenging. A resurgence of interest in using low precision arithmetic makes the search for robustness more urgent and tougher. In this paper, we focus on symmetric positive definite problems and explore a number of approaches: a look-ahead strategy to anticipate break down as early as possible, the use of global shifts, and a modification of an idea developed in the field of numerical optimization for the complete Cholesky factorization of dense matrices. Our numerical simulations target highly ill-conditioned sparse linear systems with the goal of computing the factors in half precision arithmetic and then achieving double precision accuracy using mixed precision refinement.

北京阿比特科技有限公司