The current literature on AI-advised decision making -- involving explainable AI systems advising human decision makers -- presents a series of inconclusive and confounding results. To synthesize these findings, we propose a simple theory that elucidates the frequent failure of AI explanations to engender appropriate reliance and complementary decision making performance. We argue explanations are only useful to the extent that they allow a human decision maker to verify the correctness of an AI's prediction, in contrast to other desiderata, e.g., interpretability or spelling out the AI's reasoning process. Prior studies find in many decision making contexts AI explanations do not facilitate such verification. Moreover, most tasks fundamentally do not allow easy verification, regardless of explanation method, limiting the potential benefit of any type of explanation. We also compare the objective of complementary performance with that of appropriate reliance, decomposing the latter into the notions of outcome-graded and strategy-graded reliance.
The two-alternative forced choice (2AFC) experimental setup is popular in the visual perception literature, where practitioners aim to understand how human observers perceive distances within triplets that consist of a reference image and two distorted versions of that image. In the past, this had been conducted in controlled environments, with a tournament-style algorithm dictating which images are shown to each participant to rank the distorted images. Recently, crowd-sourced perceptual datasets have emerged, with no images shared between triplets, making ranking impossible. Evaluating perceptual distances using this data is non-trivial, relying on reducing the collection of judgements on a triplet to a binary decision -- which is suboptimal and prone to misleading conclusions. Instead, we statistically model the underlying decision-making process during 2AFC experiments using a binomial distribution. We use maximum likelihood estimation to fit a distribution to the perceptual judgements, conditioned on the perceptual distance to test and impose consistency and smoothness between our empirical estimates of the density. This way, we can evaluate a different number of judgements per triplet, and can calculate metrics such as likelihoods of judgements according to a set of distances -- key ingredients that neural network counterparts lack.
In this work, we propose fully nonconforming, locally exactly divergence-free discretizations based on lowest order Crouziex-Raviart finite element and piecewise constant spaces to study the optimal control of stationary double diffusion model presented in [B\"urger, M\'endez, Ruiz-Baier, SINUM (2019), 57:1318-1343]. The well-posedness of the discrete uncontrolled state and adjoint equations are discussed using discrete lifting and fixed point arguments, and convergence results are derived rigorously under minimal regularity. Building upon our recent work [Tushar, Khan, Mohan arXiv (2023)], we prove the local optimality of a reference control using second-order sufficient optimality condition for the control problem, and use it along with an optimize-then-discretize approach to prove optimal order a priori error estimates for the control, state and adjoint variables upto the regularity of the solution. The optimal control is computed using a primal-dual active set strategy as a semi-smooth Newton method and computational tests validate the predicted error decay rates and illustrate the proposed scheme's applicability to optimal control of thermohaline circulation problems.
Video-text Large Language Models (video-text LLMs) have shown remarkable performance in answering questions and holding conversations on simple videos. However, they perform almost the same as random on grounding text queries in long and complicated videos, having little ability to understand and reason about temporal information, which is the most fundamental difference between videos and images. In this paper, we propose HawkEye, one of the first video-text LLMs that can perform temporal video grounding in a fully text-to-text manner. To collect training data that is applicable for temporal video grounding, we construct InternVid-G, a large-scale video-text corpus with segment-level captions and negative spans, with which we introduce two new time-aware training objectives to video-text LLMs. We also propose a coarse-grained method of representing segments in videos, which is more robust and easier for LLMs to learn and follow than other alternatives. Extensive experiments show that HawkEye is better at temporal video grounding and comparable on other video-text tasks with existing video-text LLMs, which verifies its superior video-text multi-modal understanding abilities.
This paper presents GGRt, a novel approach to generalizable novel view synthesis that alleviates the need for real camera poses, complexity in processing high-resolution images, and lengthy optimization processes, thus facilitating stronger applicability of 3D Gaussian Splatting (3D-GS) in real-world scenarios. Specifically, we design a novel joint learning framework that consists of an Iterative Pose Optimization Network (IPO-Net) and a Generalizable 3D-Gaussians (G-3DG) model. With the joint learning mechanism, the proposed framework can inherently estimate robust relative pose information from the image observations and thus primarily alleviate the requirement of real camera poses. Moreover, we implement a deferred back-propagation mechanism that enables high-resolution training and inference, overcoming the resolution constraints of previous methods. To enhance the speed and efficiency, we further introduce a progressive Gaussian cache module that dynamically adjusts during training and inference. As the first pose-free generalizable 3D-GS framework, GGRt achieves inference at $\ge$ 5 FPS and real-time rendering at $\ge$ 100 FPS. Through extensive experimentation, we demonstrate that our method outperforms existing NeRF-based pose-free techniques in terms of inference speed and effectiveness. It can also approach the real pose-based 3D-GS methods. Our contributions provide a significant leap forward for the integration of computer vision and computer graphics into practical applications, offering state-of-the-art results on LLFF, KITTI, and Waymo Open datasets and enabling real-time rendering for immersive experiences.
Large language models (LLMs) have shown excellent performance on various NLP tasks. To use LLMs as strong sequential recommenders, we explore the in-context learning approach to sequential recommendation. We investigate the effects of instruction format, task consistency, demonstration selection, and number of demonstrations. As increasing the number of demonstrations in ICL does not improve accuracy despite using a long prompt, we propose a novel method called LLMSRec-Syn that incorporates multiple demonstration users into one aggregated demonstration. Our experiments on three recommendation datasets show that LLMSRec-Syn outperforms state-of-the-art LLM-based sequential recommendation methods. In some cases, LLMSRec-Syn can perform on par with or even better than supervised learning methods. Our code is publicly available at //github.com/demoleiwang/LLMSRec_Syn.
Realistic 3D human generation from text prompts is a desirable yet challenging task. Existing methods optimize 3D representations like mesh or neural fields via score distillation sampling (SDS), which suffers from inadequate fine details or excessive training time. In this paper, we propose an efficient yet effective framework, HumanGaussian, that generates high-quality 3D humans with fine-grained geometry and realistic appearance. Our key insight is that 3D Gaussian Splatting is an efficient renderer with periodic Gaussian shrinkage or growing, where such adaptive density control can be naturally guided by intrinsic human structures. Specifically, 1) we first propose a Structure-Aware SDS that simultaneously optimizes human appearance and geometry. The multi-modal score function from both RGB and depth space is leveraged to distill the Gaussian densification and pruning process. 2) Moreover, we devise an Annealed Negative Prompt Guidance by decomposing SDS into a noisier generative score and a cleaner classifier score, which well addresses the over-saturation issue. The floating artifacts are further eliminated based on Gaussian size in a prune-only phase to enhance generation smoothness. Extensive experiments demonstrate the superior efficiency and competitive quality of our framework, rendering vivid 3D humans under diverse scenarios. Project Page: //alvinliu0.github.io/projects/HumanGaussian
Large-scale pretraining followed by task-specific finetuning has achieved great success in various NLP tasks. Since finetuning all parameters of large pretrained models poses substantial computational and memory challenges, several efficient finetuning methods have been developed. Among them, low-rank adaptation (LoRA), which finetunes low-rank incremental update matrices on top of frozen pretrained weights, has proven particularly effective. Nonetheless, LoRA's uniform rank assignment across all layers, along with its reliance on an exhaustive search to find the best rank, leads to high computation costs and suboptimal finetuning performance. To address these limitations, we introduce AutoLoRA, a meta learning based framework for automatically identifying the optimal rank of each LoRA layer. AutoLoRA associates each rank-1 matrix in a low-rank update matrix with a selection variable, which determines whether the rank-1 matrix should be discarded. A meta learning based method is developed to learn these selection variables. The optimal rank is determined by thresholding the values of these variables. Our comprehensive experiments on natural language understanding, generation, and sequence labeling demonstrate the effectiveness of AutoLoRA.
Large language models (LLMs) have developed impressive performance and strong explainability across various reasoning scenarios, marking a significant stride towards mimicking human-like intelligence. Despite this, when tasked with simple questions supported by a generic fact, LLMs often fail to provide consistent and precise answers, indicating a deficiency in abstract reasoning abilities. This has sparked a vigorous debate about whether LLMs are genuinely reasoning or merely memorizing. In light of this, we design a preliminary study to quantify and delve into the abstract reasoning abilities of existing LLMs. Our findings reveal a substantial discrepancy between their general reasoning and abstract reasoning performances. To relieve this problem, we tailor an abstract reasoning dataset (AbsR) together with a meaningful learning paradigm to teach LLMs how to leverage generic facts for reasoning purposes. The results show that our approach not only boosts the general reasoning performance of LLMs but also makes considerable strides towards their capacity for abstract reasoning, moving beyond simple memorization or imitation to a more nuanced understanding and application of generic facts.
With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.