亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that we can easily design a single adversarial perturbation $P$ that changes the class of $n$ images $X_1,X_2,\dots,X_n$ from their original, unperturbed classes $c_1, c_2,\dots,c_n$ to desired (not necessarily all the same) classes $c^*_1,c^*_2,\dots,c^*_n$ for up to hundreds of images and target classes at once. We call these \textit{multi-attacks}. Characterizing the maximum $n$ we can achieve under different conditions such as image resolution, we estimate the number of regions of high class confidence around a particular image in the space of pixels to be around $10^{\mathcal{O}(100)}$, posing a significant problem for exhaustive defense strategies. We show several immediate consequences of this: adversarial attacks that change the resulting class based on their intensity, and scale-independent adversarial examples. To demonstrate the redundancy and richness of class decision boundaries in the pixel space, we look for its two-dimensional sections that trace images and spell words using particular classes. We also show that ensembling reduces susceptibility to multi-attacks, and that classifiers trained on random labels are more susceptible. Our code is available on GitHub.

相關內容

In this work we show that given a connectivity graph $G$ of a $[[n,k,d]]$ quantum code, there exists $\{K_i\}_i, K_i \subset G$, such that $\sum_i |K_i|\in \Omega(k), \ |K_i| \in \Omega(d)$, and the $K_i$'s are $\tilde{\Omega}( \sqrt{{k}/{n}})$-expander. If the codes are classical we show instead that the $K_i$'s are $\tilde{\Omega}\left({{k}/{n}}\right)$-expander. We also show converses to these bounds. In particular, we show that the BPT bound for classical codes is tight in all Euclidean dimensions. Finally, we prove structural theorems for graphs with no "dense" subgraphs which might be of independent interest.

The problem of multi-object tracking (MOT) consists in detecting and tracking all the objects in a video sequence while keeping a unique identifier for each object. It is a challenging and fundamental problem for robotics. In precision agriculture the challenge of achieving a satisfactory solution is amplified by extreme camera motion, sudden illumination changes, and strong occlusions. Most modern trackers rely on the appearance of objects rather than motion for association, which can be ineffective when most targets are static objects with the same appearance, as in the agricultural case. To this end, on the trail of SORT [5], we propose AgriSORT, a simple, online, real-time tracking-by-detection pipeline for precision agriculture based only on motion information that allows for accurate and fast propagation of tracks between frames. The main focuses of AgriSORT are efficiency, flexibility, minimal dependencies, and ease of deployment on robotic platforms. We test the proposed pipeline on a novel MOT benchmark specifically tailored for the agricultural context, based on video sequences taken in a table grape vineyard, particularly challenging due to strong self-similarity and density of the instances. Both the code and the dataset are available for future comparisons.

In this paper we study the orbit closure problem for a reductive group $G\subseteq GL(X)$ acting on a finite dimensional vector space $V$ over ${\mathbb C}$. We assume that the center of $GL(X)$ lies within $G$ and acts on $V$ through a fixed non-trivial character. We study points $y,z\in V$ where (i) $z$ is obtained as the leading term of the action of a 1-parameter subgroup $\lambda (t)\subseteq G$ on $y$, and (ii) $y$ and $z$ have large distinctive stabilizers $K,H \subseteq G$. Let $O(z)$ (resp. $O(y)$) denote the $G$-orbits of $z$ (resp. $y$), and $\overline{O(z)}$ (resp. $\overline{O(y)}$) their closures, then (i) implies that $z\in \overline{O(y)}$. We address the question: under what conditions can (i) and (ii) be simultaneously satisfied, i.e, there exists a 1-PS $\lambda \subseteq G$ for which $z$ is observed as a limit of $y$. Using $\lambda$, we develop a leading term analysis which applies to $V$ as well as to ${\cal G}= Lie(G)$ the Lie algebra of $G$ and its subalgebras ${\cal K}$ and ${\cal H}$, the Lie algebras of $K$ and $H$ respectively. Through this we construct the Lie algebra $\hat{\cal K} \subseteq {\cal H}$ which connects $y$ and $z$ through their Lie algebras. We develop the properties of $\hat{\cal K}$ and relate it to the action of ${\cal H}$ on $\overline{N}=V/T_z O(z)$, the normal slice to the orbit $O(z)$. Next, we examine the possibility of {\em intermediate $G$-varieties} $W$ which lie between the orbit closures of $z$ and $y$, i.e. $\overline{O(z)} \subsetneq W \subsetneq O(y)$. These intermediate varieties are constructed using the grading obtained from $\lambda $ by its action on $V$ and ${\cal G}$. The paper hopes to contribute to the Geometric Complexity Theory approach of addressing problems in computational complexity in theoretical computer science.

Imagine a polygon-shaped platform $P$ and only one static spotlight outside $P$; which direction should the spotlight face to light most of $P$? This problem occurs in maximising the visibility, as well as in limiting the uncertainty in localisation problems. More formally, we define the following maximum cover problem: "Given a convex polygon $P$ and a Field Of View (FOV) with a given centre and inner angle $\phi$; find the direction (an angle of rotation $\theta$) of the FOV such that the intersection between the FOV and $P$ has the maximum area". In this paper, we provide the theoretical foundation for the analysis of the maximum cover with a rotating field of view. The main challenge is that the function of the area $A_{\phi}(\theta)$, with the angle of rotation $\theta$ and the fixed inner angle $\phi$, cannot be approximated directly. We found an alternative way to express it by various compositions of a function $A_{\theta}(\phi)$ (with a restricted inner angle $\phi$ and a fixed direction $\theta$). We show that $A_{\theta}(\phi)$ has an analytical solution in the special case of a two-sector intersection and later provides a constrictive solution for the original problem. Since the optimal solution is a real number, we develop an algorithm that approximates the direction of the field of view, with precision $\varepsilon$, and complexity $\mathcal{O}(n(\log{n}+(\log{\varepsilon})/\phi))$.

The problem of deciding whether a biconnected planar digraph $G=(V,E)$ can be augmented to become an $st$-planar graph by adding a set of oriented edges $E' \subseteq V \times V$ is known to be NP-complete. We show that the problem is fixed-parameter tractable when parameterized by the size of the set $E'$.

Given $n$ noisy samples with $p$ dimensions, where $n \ll p$, we show that the multi-step thresholding procedure based on the Lasso -- we call it the {\it Thresholded Lasso}, can accurately estimate a sparse vector $\beta \in {\mathbb R}^p$ in a linear model $Y = X \beta + \epsilon$, where $X_{n \times p}$ is a design matrix normalized to have column $\ell_2$-norm $\sqrt{n}$, and $\epsilon \sim N(0, \sigma^2 I_n)$. We show that under the restricted eigenvalue (RE) condition, it is possible to achieve the $\ell_2$ loss within a logarithmic factor of the ideal mean square error one would achieve with an {\em oracle } while selecting a sufficiently sparse model -- hence achieving {\it sparse oracle inequalities}; the oracle would supply perfect information about which coordinates are non-zero and which are above the noise level. We also show for the Gauss-Dantzig selector (Cand\`{e}s-Tao 07), if $X$ obeys a uniform uncertainty principle, one will achieve the sparse oracle inequalities as above, while allowing at most $s_0$ irrelevant variables in the model in the worst case, where $s_0 \leq s$ is the smallest integer such that for $\lambda = \sqrt{2 \log p/n}$, $\sum_{i=1}^p \min(\beta_i^2, \lambda^2 \sigma^2) \leq s_0 \lambda^2 \sigma^2$. Our simulation results on the Thresholded Lasso match our theoretical analysis excellently.

In preparation for observing holographic 3D content, acquiring a set of RGB color and depth map images per scene is necessary to generate computer-generated holograms (CGHs) when using the fast Fourier transform (FFT) algorithm. However, in real-world situations, these paired formats of RGB color and depth map images are not always fully available. We propose a deep learning-based method to synthesize the volumetric digital holograms using only the given RGB image, so that we can overcome environments where RGB color and depth map images are partially provided. The proposed method uses only the input of RGB image to estimate its depth map and then generate its CGH sequentially. Through experiments, we demonstrate that the volumetric hologram generated through our proposed model is more accurate than that of competitive models, under the situation that only RGB color data can be provided.

We propose a new class of Markov chain Monte Carlo methods, called $k$-polar slice sampling ($k$-PSS), as a technical tool that interpolates between and extrapolates beyond uniform and polar slice sampling. By examining Wasserstein contraction rates and spectral gaps of $k$-PSS, we obtain strong quantitative results regarding its performance for different kinds of target distributions. Because $k$-PSS contains uniform and polar slice sampling as special cases, our results significantly advance the theoretical understanding of both of these methods. In particular, we prove realistic estimates of the convergence rates of uniform slice sampling for arbitrary multivariate Gaussian distributions on the one hand, and near-arbitrary multivariate t-distributions on the other. Furthermore, our results suggest that for heavy-tailed distributions, polar slice sampling performs dimension-independently well, whereas uniform slice sampling suffers a rather strong curse of dimensionality.

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

Degradation of image quality due to the presence of haze is a very common phenomenon. Existing DehazeNet [3], MSCNN [11] tackled the drawbacks of hand crafted haze relevant features. However, these methods have the problem of color distortion in gloomy (poor illumination) environment. In this paper, a cardinal (red, green and blue) color fusion network for single image haze removal is proposed. In first stage, network fusses color information present in hazy images and generates multi-channel depth maps. The second stage estimates the scene transmission map from generated dark channels using multi channel multi scale convolutional neural network (McMs-CNN) to recover the original scene. To train the proposed network, we have used two standard datasets namely: ImageNet [5] and D-HAZY [1]. Performance evaluation of the proposed approach has been carried out using structural similarity index (SSIM), mean square error (MSE) and peak signal to noise ratio (PSNR). Performance analysis shows that the proposed approach outperforms the existing state-of-the-art methods for single image dehazing.

北京阿比特科技有限公司