In this paper, numerical methods based on Vieta-Lucas wavelets are proposed for solving a class of singular differential equations. The operational matrix of the derivative for Vieta-Lucas wavelets is derived. It is employed to reduce the differential equations into the system of algebraic equations by applying the ideas of the collocation scheme, Tau scheme, and Galerkin scheme respectively. Furthermore, the convergence analysis and error estimates for Vieta-Lucas wavelets are performed. In the numerical section, the comparative analysis is presented among the different versions of the proposed Vieta-Lucas wavelet methods, and the accuracy of the approaches is evaluated by computing the errors and comparing them to the existing findings.
We numerically investigate the generalized Steklov problem for the modified Helmholtz equation and focus on the relation between its spectrum and the geometric structure of the domain. We address three distinct aspects: (i) the asymptotic behavior of eigenvalues for polygonal domains; (ii) the dependence of the integrals of eigenfunctions on the domain symmetries; and (iii) the localization and exponential decay of Steklov eigenfunctions away from the boundary for smooth shapes and in the presence of corners. For this purpose, we implemented two complementary numerical methods to compute the eigenvalues and eigenfunctions of the associated Dirichlet-to-Neumann operator for various simply-connected planar domains. We also discuss applications of the obtained results in the theory of diffusion-controlled reactions and formulate several conjectures with relevance in spectral geometry.
We study the canonical momentum based discretizations of a hybrid model with kinetic ions and mass-less electrons. Two equivalent formulations of the hybrid model are presented, in which the vector potentials are in different gauges and the distribution functions depend on canonical momentum (not velocity). Particle-in-cell methods are used for the distribution functions, and the vector potentials are discretized by the finite element methods in the framework of finite element exterior calculus. Splitting methods are used for the time discretizations. It is illustrated that the second formulation is numerically superior and the schemes constructed based on the anti-symmetric bracket proposed have better conservation properties, although the filters can be used to improve the schemes of the first formulation.
We propose a new framework for the simultaneous inference of monotone and smoothly time-varying functions under complex temporal dynamics utilizing the monotone rearrangement and the nonparametric estimation. We capitalize the Gaussian approximation for the nonparametric monotone estimator and construct the asymptotically correct simultaneous confidence bands (SCBs) by carefully designed bootstrap methods. We investigate two general and practical scenarios. The first is the simultaneous inference of monotone smooth trends from moderately high-dimensional time series, and the proposed algorithm has been employed for the joint inference of temperature curves from multiple areas. Specifically, most existing methods are designed for a single monotone smooth trend. In such cases, our proposed SCB empirically exhibits the narrowest width among existing approaches while maintaining confidence levels, and has been used for testing several hypotheses tailored to global warming. The second scenario involves simultaneous inference of monotone and smoothly time-varying regression coefficients in time-varying coefficient linear models. The proposed algorithm has been utilized for testing the impact of sunshine duration on temperature which is believed to be increasing by the increasingly severe greenhouse effect. The validity of the proposed methods has been justified in theory as well as by extensive simulations.
We propose a new method for the construction of layer-adapted meshes for singularly perturbed differential equations (SPDEs), based on mesh partial differential equations (MPDEs) that incorporate \emph{a posteriori} solution information. There are numerous studies on the development of parameter robust numerical methods for SPDEs that depend on the layer-adapted mesh of Bakhvalov. In~\citep{HiMa2021}, a novel MPDE-based approach for constructing a generalisation of these meshes was proposed. Like with most layer-adapted mesh methods, the algorithms in that article depended on detailed derivations of \emph{a priori} bounds on the SPDE's solution and its derivatives. In this work we extend that approach so that it instead uses \emph{a posteriori} computed estimates of the solution. We present detailed algorithms for the efficient implementation of the method, and numerical results for the robust solution of two-parameter reaction-convection-diffusion problems, in one and two dimensions. We also provide full FEniCS code for a one-dimensional example.
Lyapunov functions play a vital role in the context of control theory for nonlinear dynamical systems. Besides its classical use for stability analysis, Lyapunov functions also arise in iterative schemes for computing optimal feedback laws such as the well-known policy iteration. In this manuscript, the focus is on the Lyapunov function of a nonlinear autonomous finite-dimensional dynamical system which will be rewritten as an infinite-dimensional linear system using the Koopman or composition operator. Since this infinite-dimensional system has the structure of a weak-* continuous semigroup, in a specially weighted $\mathrm{L}^p$-space one can establish a connection between the solution of an operator Lyapunov equation and the desired Lyapunov function. It will be shown that the solution to this operator equation attains a rapid eigenvalue decay which justifies finite rank approximations with numerical methods. The potential benefit for numerical computations will be demonstrated with two short examples.
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables, which is a component-based approach aiming to study the relationships between several sets of variables. Sparse generalized canonical correlation analysis (SGCCA) (proposed in Tenenhaus et al. (2014)), combines RGCCA with an `1-penalty, in which blocks are not necessarily fully connected, makes SGCCA a flexible method for analyzing a wide variety of practical problems, such as biology, chemistry, sensory analysis, marketing, food research, etc. In Tenenhaus et al. (2014), an iterative algorithm for SGCCA was designed based on the solution to the subproblem (LM-P1 for short) of maximizing a linear function on the intersection of an `1-norm ball and a unit `2-norm sphere proposed in Witten et al. (2009). However, the solution to the subproblem (LM-P1) proposed in Witten et al. (2009) is not correct, which may become the reason that the iterative algorithm for SGCCA is slow and not always convergent. For this, we first characterize the solution to the subproblem LM-P1, and the subproblems LM-P2 and LM-P3, which maximize a linear function on the intersection of an `1-norm sphere and a unit `2-norm sphere, and an `1-norm ball and a unit `2-norm sphere, respectively. Then we provide more efficient block coordinate descent (BCD) algorithms for SGCCA and its two variants, called SGCCA-BCD1, SGCCA-BCD2 and SGCCA-BCD3, corresponding to the subproblems LM-P1, LM-P2 and LM-P3, respectively, prove that they all globally converge to their stationary points. We further propose gradient projected (GP) methods for SGCCA and its two variants when using the Horst scheme, called SGCCA-GP1, SGCCA-GP2 and SGCCA-GP3, corresponding to the subproblems LM-P1, LM-P2 and LM-P3, respectively, and prove that they all
In this work, a new class of vector-valued phase field models is presented, where the values of the phase parameters are constrained by a convex set. The generated phase fields feature the partition of the domain into patches of distinct phases, separated by thin interfaces. The configuration and dynamics of the phases are directly dependent on the geometry and topology of the convex constraint set, which makes it possible to engineer models of this type that exhibit desired interactions and patterns. An efficient proximal gradient solver is introduced to study numerically their L2-gradient flow, i.e.~the associated Allen-Cahn-type equation. Applying the solver together with various choices for the convex constraint set, yields numerical results that feature a number of patterns observed in nature and engineering, such as multiphase grains in metal alloys, traveling waves in reaction-diffusion systems, and vortices in magnetic materials.
We propose to approximate a (possibly discontinuous) multivariate function f (x) on a compact set by the partial minimizer arg miny p(x, y) of an appropriate polynomial p whose construction can be cast in a univariate sum of squares (SOS) framework, resulting in a highly structured convex semidefinite program. In a number of non-trivial cases (e.g. when f is a piecewise polynomial) we prove that the approximation is exact with a low-degree polynomial p. Our approach has three distinguishing features: (i) It is mesh-free and does not require the knowledge of the discontinuity locations. (ii) It is model-free in the sense that we only assume that the function to be approximated is available through samples (point evaluations). (iii) The size of the semidefinite program is independent of the ambient dimension and depends linearly on the number of samples. We also analyze the sample complexity of the approach, proving a generalization error bound in a probabilistic setting. This allows for a comparison with machine learning approaches.
We propose a method to modify a polygonal mesh in order to fit the zero-isoline of a level set function by extending a standard body-fitted strategy to a tessellation with arbitrarily-shaped elements. The novel level set-fitted approach, in combination with a Discontinuous Galerkin finite element approximation, provides an ideal setting to model physical problems characterized by embedded or evolving complex geometries, since it allows skipping any mesh post-processing in terms of grid quality. The proposed methodology is firstly assessed on the linear elasticity equation, by verifying the approximation capability of the level set-fitted approach when dealing with configurations with heterogeneous material properties. Successively, we combine the level set-fitted methodology with a minimum compliance topology optimization technique, in order to deliver optimized layouts exhibiting crisp boundaries and reliable mechanical performances. An extensive numerical test campaign confirms the effectiveness of the proposed method.
The formulation of Bayesian inverse problems involves choosing prior distributions; choices that seem equally reasonable may lead to significantly different conclusions. We develop a computational approach to better understand the impact of the hyperparameters defining the prior on the posterior statistics of the quantities of interest. Our approach relies on global sensitivity analysis (GSA) of Bayesian inverse problems with respect to the hyperparameters defining the prior. This, however, is a challenging problem--a naive double loop sampling approach would require running a prohibitive number of Markov chain Monte Carlo (MCMC) sampling procedures. The present work takes a foundational step in making such a sensitivity analysis practical through (i) a judicious combination of efficient surrogate models and (ii) a tailored importance sampling method. In particular, we can perform accurate GSA of posterior prediction statistics with respect to prior hyperparameters without having to repeat MCMC runs. We demonstrate the effectiveness of the approach on a simple Bayesian linear inverse problem and a nonlinear inverse problem governed by an epidemiological model.