The discovery of therapeutic molecules is fundamentally a multi-objective optimization problem. One formulation of the problem is to identify molecules that simultaneously exhibit strong binding affinity for a target protein, minimal off-target interactions, and suitable pharmacokinetic properties. Inspired by prior work that uses active learning to accelerate the identification of strong binders, we implement multi-objective Bayesian optimization to reduce the computational cost of multi-property virtual screening and apply it to the identification of ligands predicted to be selective based on docking scores to on- and off-targets. We demonstrate the superiority of Pareto optimization over scalarization across three case studies. Further, we use the developed optimization tool to search a virtual library of over 4M molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R, acquiring 100% of the molecules that form the library's Pareto front after exploring only 8% of the library. This workflow and associated open source software can reduce the screening burden of molecular design projects and is complementary to research aiming to improve the accuracy of binding predictions and other molecular properties.
The recent discovery of a connection between Transformers and Modern Hopfield Networks (MHNs) has reignited the study of neural networks from a physical energy-based perspective. This paper focuses on the pivotal effect of the inverse temperature hyperparameter $\beta$ on the distribution of energy minima of the MHN. To achieve this, the distribution of energy minima is tracked in a simplified MHN in which equidistant normalised patterns are stored. This network demonstrates a phase transition at a critical temperature $\beta_{\text{c}}$, from a single global attractor towards highly pattern specific minima as $\beta$ is increased. Importantly, the dynamics are not solely governed by the hyperparameter $\beta$ but are instead determined by an effective inverse temperature $\beta_{\text{eff}}$ which also depends on the distribution and size of the stored patterns. Recognizing the role of hyperparameters in the MHN could, in the future, aid researchers in the domain of Transformers to optimise their initial choices, potentially reducing the necessity for time and energy expensive hyperparameter fine-tuning.
Hallucinations and unfaithful synthesis due to inaccurate prompts with insufficient semantic details are widely observed in multimodal generative models. A prevalent strategy to align multiple modalities is to fine-tune the generator with a large number of annotated text-image pairs. However, such a procedure is labor-consuming and resource-draining. The key question we ask is: can we enhance the quality and faithfulness of text-driven generative models beyond extensive text-image pair annotations? To address this question, we propose Knowledge Pursuit Prompting (KPP), a zero-shot framework that iteratively incorporates external knowledge to help generators produce reliable visual content. Instead of training generators to handle generic prompts, KPP employs a recursive knowledge query process to gather informative external facts from the knowledge base, instructs a language model to compress the acquired knowledge for prompt refinement, and utilizes text-driven generators for visual synthesis. The entire process is zero-shot, without accessing the architectures and parameters of generative models. We evaluate the framework across multiple text-driven generative tasks (image, 3D rendering, and video) on datasets of different domains. We further demonstrate the extensibility and adaptability of KPP through varying foundation model bases and instructions. Our results show that KPP is capable of generating faithful and semantically rich content across diverse visual domains, offering a promising solution to improve multimodal generative models.
As the impending consequences of climate change loom over the Earth, it has become vital for researchers to understand the role microorganisms play in this process. In this paper, we examine how environmental factors, including moisture levels and temperature, affect the expression of certain fungal characteristics on a microscale, and how these in turn affect fungal biodiversity and ecosystem decomposition rates over time. We first present a differential equation model to understand how the distribution of different fungal isolates depends on regional moisture levels. We introduce both slow and sudden variations into the environment in order to represent the various ways climate change will impact fungal ecosystems. This model demonstrates that increased variability in moisture (both short-term and long-term) increases biodiversity and that fungal populations will shift towards more stress-tolerant fungi as aridity increases. The model further suggests the lack of any direct link between biodiversity and decomposition rates. To better describe fungal competition with respect to space, we develop a local agent-based model (ABM). Unlike the previous model, our ABM focuses on individuals, tracking each fungus and the result of its interactions. Our ABM also features a more accurate spatial combat system, allowing us to precisely discern the influence of fungal interactions on the environment. This model corroborates the results of the differential equation model and further suggests that moisture, through its link with temperature and effects on fungal population, also plays a strong role in determining fungal decomposition rates. Together, these models suggest that climate change, which portends increasing variability in regional conditions and higher average temperatures worldwide, will lead to an increase in both wood decomposition rates and, independently, fungal biodiversity.
There are a number of available methods for selecting whom to prioritize for treatment, including ones based on treatment effect estimation, risk scoring, and hand-crafted rules. We propose rank-weighted average treatment effect (RATE) metrics as a simple and general family of metrics for comparing and testing the quality of treatment prioritization rules. RATE metrics are agnostic as to how the prioritization rules were derived, and only assess how well they identify individuals that benefit the most from treatment. We define a family of RATE estimators and prove a central limit theorem that enables asymptotically exact inference in a wide variety of randomized and observational study settings. RATE metrics subsume a number of existing metrics, including the Qini coefficient, and our analysis directly yields inference methods for these metrics. We showcase RATE in the context of a number of applications, including optimal targeting of aspirin to stroke patients.
We study the problem of recovering Gaussian data under adversarial corruptions when the noises are low-rank and the corruptions are on the coordinate level. Concretely, we assume that the Gaussian noises lie in an unknown $k$-dimensional subspace $U \subseteq \mathbb{R}^d$, and $s$ randomly chosen coordinates of each data point fall into the control of an adversary. This setting models the scenario of learning from high-dimensional yet structured data that are transmitted through a highly-noisy channel, so that the data points are unlikely to be entirely clean. Our main result is an efficient algorithm that, when $ks^2 = O(d)$, recovers every single data point up to a nearly-optimal $\ell_1$ error of $\tilde O(ks/d)$ in expectation. At the core of our proof is a new analysis of the well-known Basis Pursuit (BP) method for recovering a sparse signal, which is known to succeed under additional assumptions (e.g., incoherence or the restricted isometry property) on the underlying subspace $U$. In contrast, we present a novel approach via studying a natural combinatorial problem and show that, over the randomness in the support of the sparse signal, a high-probability error bound is possible even if the subspace $U$ is arbitrary.
Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.
Humans can naturally and effectively find salient regions in complex scenes. Motivated by this observation, attention mechanisms were introduced into computer vision with the aim of imitating this aspect of the human visual system. Such an attention mechanism can be regarded as a dynamic weight adjustment process based on features of the input image. Attention mechanisms have achieved great success in many visual tasks, including image classification, object detection, semantic segmentation, video understanding, image generation, 3D vision, multi-modal tasks and self-supervised learning. In this survey, we provide a comprehensive review of various attention mechanisms in computer vision and categorize them according to approach, such as channel attention, spatial attention, temporal attention and branch attention; a related repository //github.com/MenghaoGuo/Awesome-Vision-Attentions is dedicated to collecting related work. We also suggest future directions for attention mechanism research.
Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.