亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Matrix/array analysis of networks can provide significant insight into their behavior and aid in their operation and protection. Prior work has demonstrated the analytic, performance, and compression capabilities of GraphBLAS (graphblas.org) hypersparse matrices and D4M (d4m.mit.edu) associative arrays (a mathematical superset of matrices). Obtaining the benefits of these capabilities requires integrating them into operational systems, which comes with its own unique challenges. This paper describes two examples of real-time operational implementations. First, is an operational GraphBLAS implementation that constructs anonymized hypersparse matrices on a high-bandwidth network tap. Second, is an operational D4M implementation that analyzes daily cloud gateway logs. The architectures of these implementations are presented. Detailed measurements of the resources and the performance are collected and analyzed. The implementations are capable of meeting their operational requirements using modest computational resources (a couple of processing cores). GraphBLAS is well-suited for low-level analysis of high-bandwidth connections with relatively structured network data. D4M is well-suited for higher-level analysis of more unstructured data. This work demonstrates that these technologies can be implemented in operational settings.

相關內容

Quantiles are useful characteristics of random variables that can provide substantial information on distributions compared with commonly used summary statistics such as means. In this paper, we propose a Bayesian quantile trend filtering method to estimate non-stationary trend of quantiles. We introduce general shrinkage priors to induce locally adaptive Bayesian inference on trends and mixture representation of the asymmetric Laplace likelihood. To quickly compute the posterior distribution, we develop calibrated mean-field variational approximations to guarantee that the frequentist coverage of credible intervals obtained from the approximated posterior is a specified nominal level. Simulation and empirical studies show that the proposed algorithm is computationally much more efficient than the Gibbs sampler and tends to provide stable inference results, especially for high/low quantiles.

For multi-transmission rate environments, access point (AP) connection methods have been proposed for maximizing system throughput, which is the throughput of an entire system, on the basis of the cooperative behavior of users. These methods derive optimal positions for the cooperative behavior of users, which means that new users move to improve the system throughput when connecting to an AP. However, the conventional method only considers the transmission rate of new users and does not consider existing users, even though it is necessary to consider the transmission rate of all users to improve system throughput. In addition, these method do not take into account the frequency of interference between users. In this paper, we propose an AP connection method which maximizes system throughput by considering the interference between users and the initial position of all users. In addition, our proposed method can improve system throughput by about 6% at most compared to conventional methods.

Coding schemes for several problems in network information theory are constructed starting from point-to-point channel codes that are designed for symmetric channels. Given that the point-to-point codes satisfy certain properties pertaining to the rate, the error probability, and the distribution of decoded sequences, bounds on the performance of the coding schemes are derived and shown to hold irrespective of other properties of the codes. In particular, we consider the problems of lossless and lossy source coding, Slepian-Wolf coding, Wyner-Ziv coding, Berger-Tung coding, multiple description coding, asymmetric channel coding, Gelfand-Pinsker coding, coding for multiple access channels, Marton coding for broadcast channels, and coding for cloud radio access networks (C-RAN's). We show that the coding schemes can achieve the best known inner bounds for these problems, provided that the constituent point-to-point channel codes are rate-optimal. This would allow one to leverage commercial off-the-shelf codes for point-to-point symmetric channels in the practical implementation of codes over networks. Simulation results demonstrate the gain of the proposed coding schemes compared to existing practical solutions to these problems.

The performance of neural networks has been significantly improved by increasing the number of channels in convolutional layers. However, this increase in performance comes with a higher computational cost, resulting in numerous studies focused on reducing it. One promising approach to address this issue is group convolution, which effectively reduces the computational cost by grouping channels. However, to the best of our knowledge, there has been no theoretical analysis on how well the group convolution approximates the standard convolution. In this paper, we mathematically analyze the approximation of the group convolution to the standard convolution with respect to the number of groups. Furthermore, we propose a novel variant of the group convolution called balanced group convolution, which shows a higher approximation with a small additional computational cost. We provide experimental results that validate our theoretical findings and demonstrate the superior performance of the balanced group convolution over other variants of group convolution.

Deep discriminative approaches like random forests and deep neural networks have recently found applications in many important real-world scenarios. However, deploying these learning algorithms in safety-critical applications raises concerns, particularly when it comes to ensuring confidence calibration for both in-distribution and out-of-distribution data points. Many popular methods for in-distribution (ID) calibration, such as isotonic regression and Platt's sigmoidal regression, exhibit excellent ID calibration performance but often at the cost of classification accuracy. Moreover, these methods are not calibrated for the entire feature space, leading to overconfidence in the case of out-of-distribution (OOD) samples. In this paper, we leveraged the fact that deep models, including both random forests and deep-nets, learn internal representations which are unions of polytopes with affine activation functions to conceptualize them both as partitioning rules of the feature space. We replace the affine function in each polytope populated by the training data with a Gaussian kernel. We propose sufficient conditions for our proposed methods to be consistent estimators of the corresponding class conditional densities. Moreover, our experiments on both tabular and vision benchmarks show that the proposed approaches obtain well-calibrated posteriors while mostly preserving or improving the classification accuracy of the original algorithm for in-distribution region, and extrapolates beyond the training data to handle out-of-distribution inputs appropriately.

Recent advances in whole-slide image (WSI) scanners and computational capabilities have significantly propelled the application of artificial intelligence in histopathology slide analysis. While these strides are promising, current supervised learning approaches for WSI analysis come with the challenge of exhaustively labeling high-resolution slides - a process that is both labor-intensive and time-consuming. In contrast, self-supervised learning (SSL) pretraining strategies are emerging as a viable alternative, given that they don't rely on explicit data annotations. These SSL strategies are quickly bridging the performance disparity with their supervised counterparts. In this context, we introduce an SSL framework. This framework aims for transferable representation learning and semantically meaningful clustering by synergizing invariance loss and clustering loss in WSI analysis. Notably, our approach outperforms common SSL methods in downstream classification and clustering tasks, as evidenced by tests on the Camelyon16 and a pancreatic cancer dataset. The code and additional details are accessible at: //github.com/wwyi1828/CluSiam.

Randomized experimental comparisons of alternative pedagogical strategies could provide useful empirical evidence in instructors' decision-making. However, traditional experiments do not have a clear and simple pathway to using data rapidly to try to increase the chances that students in an experiment get the best conditions. Drawing inspiration from the use of machine learning and experimentation in product development at leading technology companies, we explore how adaptive experimentation might help in continuous course improvement. In adaptive experiments, as different arms/conditions are deployed to students, data is analyzed and used to change the experience for future students. This can be done using machine learning algorithms to identify which actions are more promising for improving student experience or outcomes. This algorithm can then dynamically deploy the most effective conditions to future students, resulting in better support for students' needs. We illustrate the approach with a case study providing a side-by-side comparison of traditional and adaptive experimentation of self-explanation prompts in online homework problems in a CS1 course. This provides a first step in exploring the future of how this methodology can be useful in bridging research and practice in doing continuous improvement.

The technical trends for the next-generation wireless network significantly extend the near-field region, necessitating a reevaluation for the performance of integrated sensing and communications (ISAC) to account for the effects introduced by the near field. In this paper, a near-field ISAC framework is proposed with a more accurate channel model than the three conventional models (TCMs): uniform plane wave, uniform spherical wave, and non-uniform spherical wave, in which the effective aperture of the antenna is considered. Based on the proposed model, sensing and communication (S&C) performance in both downlink and uplink scenarios are analyzed. For the downlink case, three distinct designs are studied: the communications-centric (C-C) design, the sensing-centric (S-C) design, and the Pareto optimal design. Regarding the uplink case, the C-C design, the S-C design and the time-sharing strategy are considered. Within each design, sensing rates (SRs) and communication rates (CRs) are derived. To gain further insights, high signal-to-noise ratio slopes and rate scaling laws concerning the number of antennas are also examined. Finally, the attainable SR-CR regions of the near-field ISAC are characterized. Numerical results reveal that 1) as the number of antennas grows, the SRs and CRs of the proposed model converges to constants, while those of the TCMs increase unboundedly; 2) ISAC achieves a more extensive rate region than the conventional frequency-division S&C in both downlink and uplink cases.

Adiabatic quantum computing (AQC) is a promising quantum computing approach for discrete and often NP-hard optimization problems. Current AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for many machine learning and computer vision tasks. Despite requiring multiple measurements from the noisy AQC, current approaches only utilize the best measurement, discarding information contained in the remaining ones. In this work, we explore the potential of using this information for probabilistic balanced k-means clustering. Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost. This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic and real data.

Graph neural networks (GNNs) have gained significant popularity due to the powerful capability to extract useful representations from graph data. As the need for efficient GNN computation intensifies, a variety of programming abstractions designed for optimizing GNN Aggregation have emerged to facilitate acceleration. However, there is no comprehensive evaluation and analysis upon existing abstractions, thus no clear consensus on which approach is better. In this letter, we classify existing programming abstractions for GNN Aggregation by the dimension of data organization and propagation method. By constructing these abstractions on a state-of-the-art GNN library, we perform a thorough and detailed characterization study to compare their performance and efficiency, and provide several insights on future GNN acceleration based on our analysis.

北京阿比特科技有限公司