亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite advances in generative methods, accurately modeling the distribution of graphs remains a challenging task primarily because of the absence of predefined or inherent unique graph representation. Two main strategies have emerged to tackle this issue: 1) restricting the number of possible representations by sorting the nodes, or 2) using permutation-invariant/equivariant functions, specifically Graph Neural Networks (GNNs). In this paper, we introduce a new framework named Discrete Graph Auto-Encoder (DGAE), which leverages the strengths of both strategies and mitigate their respective limitations. In essence, we propose a strategy in 2 steps. We first use a permutation-equivariant auto-encoder to convert graphs into sets of discrete latent node representations, each node being represented by a sequence of quantized vectors. In the second step, we sort the sets of discrete latent representations and learn their distribution with a specifically designed auto-regressive model based on the Transformer architecture. Through multiple experimental evaluations, we demonstrate the competitive performances of our model in comparison to the existing state-of-the-art across various datasets. Various ablation studies support the interest of our method.

相關內容

Counting (p,q)-bicliques in bipartite graphs poses a foundational challenge with broad applications, from densest subgraph discovery in algorithmic research to personalized content recommendation in practical scenarios. Despite its significance, current leading (p,q)-biclique counting algorithms fall short, particularly when faced with larger graph sizes and clique scales. Fortunately, the problem's inherent structure, allowing for the independent counting of each biclique starting from every vertex, combined with a substantial set intersections, makes it highly amenable to parallelization. Recent successes in GPU-accelerated algorithms across various domains motivate our exploration into harnessing the parallelism power of GPUs to efficiently address the (p,q)-biclique counting challenge. We introduce GBC (GPU-based Biclique Counting), a novel approach designed to enable efficient and scalable (p,q)-biclique counting on GPUs. To address major bottleneck arising from redundant comparisons in set intersections (occupying an average of 90% of the runtime), we introduce a novel data structure that hashes adjacency lists into truncated bitmaps to enable efficient set intersection on GPUs via bit-wise AND operations. Our innovative hybrid DFS-BFS exploration strategy further enhances thread utilization and effectively manages memory constraints. A composite load balancing strategy, integrating pre-runtime and runtime workload allocation, ensures equitable distribution among threads. Additionally, we employ vertex reordering and graph partitioning strategies for improved compactness and scalability. Experimental evaluations on eight real-life and two synthetic datasets demonstrate that GBC outperforms state-of-the-art algorithms by a substantial margin. In particular, GBC achieves an average speedup of 497.8x, with the largest instance achieving a remarkable 1217.7x speedup when p = q = 8.

In the pursuit of transferring a source model to a target domain without access to the source training data, Source-Free Domain Adaptation (SFDA) has been extensively explored across various scenarios, including closed-set, open-set, partial-set, and generalized settings. Existing methods, focusing on specific scenarios, not only address only a subset of challenges but also necessitate prior knowledge of the target domain, significantly limiting their practical utility and deployability. In light of these considerations, we introduce a more practical yet challenging problem, termed unified SFDA, which comprehensively incorporates all specific scenarios in a unified manner. To tackle this unified SFDA problem, we propose a novel approach called Latent Causal Factors Discovery (LCFD). In contrast to previous alternatives that emphasize learning the statistical description of reality, we formulate LCFD from a causality perspective. The objective is to uncover the causal relationships between latent variables and model decisions, enhancing the reliability and robustness of the learned model against domain shifts. To integrate extensive world knowledge, we leverage a pre-trained vision-language model such as CLIP. This aids in the formation and discovery of latent causal factors in the absence of supervision in the variation of distribution and semantics, coupled with a newly designed information bottleneck with theoretical guarantees. Extensive experiments demonstrate that LCFD can achieve new state-of-the-art results in distinct SFDA settings, as well as source-free out-of-distribution generalization.Our code and data are available at //github.com/tntek/source-free-domain-adaptation.

Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into the SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This method maintains the flexibility of the text and is user-friendly. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR utilizes the pre-trained language model (e.g., T5 or CLIP) to enhance restoration. We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into SR, yields excellent results on both synthetic and real-world images. Code is available at: //github.com/zhengchen1999/PromptSR.

In dynamic submodular maximization, the goal is to maintain a high-value solution over a sequence of element insertions and deletions with a fast update time. Motivated by large-scale applications and the fact that dynamic data often exhibits patterns, we ask the following question: can predictions be used to accelerate the update time of dynamic submodular maximization algorithms? We consider the model for dynamic algorithms with predictions where predictions regarding the insertion and deletion times of elements can be used for preprocessing. Our main result is an algorithm with an $O(poly(\log \eta, \log w, \log k))$ amortized update time over the sequence of updates that achieves a $1/2 - \epsilon$ approximation in expectation for dynamic monotone submodular maximization under a cardinality constraint $k$, where the prediction error $\eta$ is the number of elements that are not inserted and deleted within $w$ time steps of their predicted insertion and deletion times. This amortized update time is independent of the length of the stream and instead depends on the prediction error.

We propose a hybrid model predictive control algorithm, consensus complementarity control (C3), for systems that make and break contact with their environment. Many state-of-the-art controllers for tasks which require initiating contact with the environment, such as locomotion and manipulation, require a priori mode schedules or are too computationally complex to run at real-time rates. We present a method based on the alternating direction method of multipliers (ADMM) that is capable of high-speed reasoning over potential contact events. Via a consensus formulation, our approach enables parallelization of the contact scheduling problem. We validate our results on five numerical examples, including four high-dimensional frictional contact problems, and a physical experimentation on an underactuated multi-contact system. We further demonstrate the effectiveness of our method on a physical experiment accomplishing a high-dimensional, multi-contact manipulation task with a robot arm.

A novel near-field transmission framework is proposed for dynamic metasurface antenna (DMA)-enabled non-orthogonal multiple access (NOMA) networks. The base station (BS) exploits the hybrid beamforming to communicate with multiple near users (NUs) and far users (FUs) using the NOMA principle. Based on this framework, two novel beamforming schemes are proposed. 1) For the case of the grouped users distributed in the same direction, a beam-steering scheme is developed. The metric of beam pattern error (BPE) is introduced for the characterization of the gap between the hybrid beamformers and the desired ideal beamformers, where a two-layer algorithm is proposed to minimize BPE by optimizing hybrid beamformers. Then, the optimal power allocation strategy is obtained to maximize the sum achievable rate of the network. 2) For the case of users randomly distributed, a beam-splitting scheme is proposed, where two sub-beamformers are extracted from the single beamformer to serve different users in the same group. An alternating optimization (AO) algorithm is proposed for hybrid beamformer optimization, and the optimal power allocation is also derived. Numerical results validate that: 1) the proposed beamforming schemes exhibit superior performance compared with the existing imperfect-resolution-based beamforming scheme; 2) the communication rate of the proposed transmission framework is sensitive to the imperfect distance knowledge of NUs but not to that of FUs.

Broadly, the goal when clustering data is to separate observations into meaningful subgroups. The rich variety of methods for clustering reflects the fact that the relevant notion of meaningful clusters varies across applications. The classical Bayesian approach clusters observations by their association with components of a mixture model; the choice in class of components allows flexibility to capture a range of meaningful cluster notions. However, in practice the range is somewhat limited as difficulties with computation and cluster identifiability arise as components are made more flexible. Instead of mixture component attribution, we consider clusterings that are functions of the data and the density $f$, which allows us to separate flexible density estimation from clustering. Within this framework, we develop a method to cluster data into connected components of a level set of $f$. Under mild conditions, we establish that our Bayesian level-set (BALLET) clustering methodology yields consistent estimates, and we highlight its performance in a variety of toy and simulated data examples. Finally, through an application to astronomical data we show the method performs favorably relative to the popular level-set clustering algorithm DBSCAN in terms of accuracy, insensitivity to tuning parameters, and quantification of uncertainty.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

北京阿比特科技有限公司