亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give a stochastic optimization algorithm that solves a dense $n\times n$ real-valued linear system $Ax=b$, returning $\tilde x$ such that $\|A\tilde x-b\|\leq \epsilon\|b\|$ in time: $$\tilde O((n^2+nk^{\omega-1})\log1/\epsilon),$$ where $k$ is the number of singular values of $A$ larger than $O(1)$ times its smallest positive singular value, $\omega < 2.372$ is the matrix multiplication exponent, and $\tilde O$ hides a poly-logarithmic in $n$ factor. When $k=O(n^{1-\theta})$ (namely, $A$ has a flat-tailed spectrum, e.g., due to noisy data or regularization), this improves on both the cost of solving the system directly, as well as on the cost of preconditioning an iterative method such as conjugate gradient. In particular, our algorithm has an $\tilde O(n^2)$ runtime when $k=O(n^{0.729})$. We further adapt this result to sparse positive semidefinite matrices and least squares regression. Our main algorithm can be viewed as a randomized block coordinate descent method, where the key challenge is simultaneously ensuring good convergence and fast per-iteration time. In our analysis, we use theory of majorization for elementary symmetric polynomials to establish a sharp convergence guarantee when coordinate blocks are sampled using a determinantal point process. We then use a Markov chain coupling argument to show that similar convergence can be attained with a cheaper sampling scheme, and accelerate the block coordinate descent update via matrix sketching.

相關內容

A subset $S$ of the Boolean hypercube $\mathbb{F}_2^n$ is a sumset if $S = \{a + b : a, b\in A\}$ for some $A \subseteq \mathbb{F}_2^n$. Sumsets are central objects of study in additive combinatorics, featuring in several influential results. We prove a lower bound of $\Omega(2^{n/2})$ for the number of queries needed to test whether a Boolean function $f:\mathbb{F}_2^n \to \{0,1\}$ is the indicator function of a sumset. Our lower bound for testing sumsets follows from sharp bounds on the related problem of shift testing, which may be of independent interest. We also give a near-optimal $2^{n/2} \cdot \mathrm{poly}(n)$-query algorithm for a smoothed analysis formulation of the sumset refutation problem.

Leroux has proved that unreachability in Petri nets can be witnessed by a Presburger separator, i.e. if a marking $\vec{m}_\text{src}$ cannot reach a marking $\vec{m}_\text{tgt}$, then there is a formula $\varphi$ of Presburger arithmetic such that: $\varphi(\vec{m}_\text{src})$ holds; $\varphi$ is forward invariant, i.e., $\varphi(\vec{m})$ and $\vec{m} \rightarrow \vec{m}'$ imply $\varphi(\vec{m}'$); and $\neg \varphi(\vec{m}_\text{tgt})$ holds. While these separators could be used as explanations and as formal certificates of unreachability, this has not yet been the case due to their worst-case size, which is at least Ackermannian, and the complexity of checking that a formula is a separator, which is at least exponential (in the formula size). We show that, in continuous Petri nets, these two problems can be overcome. We introduce locally closed separators, and prove that: (a) unreachability can be witnessed by a locally closed separator computable in polynomial time; (b) checking whether a formula is a locally closed separator is in NC (so, simpler than unreachability, which is P-complete). We further consider the more general problem of (existential) set-to-set reachability, where two sets of markings are given as convex polytopes. We show that, while our approach does not extend directly, we can efficiently certify unreachability via an altered Petri net.

We introduce a test for the conditional independence of random variables $X$ and $Y$ given a random variable $Z$, specifically by sampling from the joint distribution $(X,Y,Z)$, binning the support of the distribution of $Z$, and conducting multiple $p$-Wasserstein two-sample tests. Under a $p$-Wasserstein Lipschitz assumption on the conditional distributions $\mathcal{L}_{X|Z}$, $\mathcal{L}_{Y|Z}$, and $\mathcal{L}_{(X,Y)|Z}$, we show that it is possible to control the Type I and Type II error of this test, and give examples of explicit finite-sample error bounds in the case where the distribution of $Z$ has compact support.

Let $X$ be a $d$-dimensional simplicial complex. A function $F\colon X(k)\to \{0,1\}^k$ is said to be a direct product function if there exists a function $f\colon X(1)\to \{0,1\}$ such that $F(\sigma) = (f(\sigma_1), \ldots, f(\sigma_k))$ for each $k$-face $\sigma$. In an effort to simplify components of the PCP theorem, Goldreich and Safra introduced the problem of direct product testing, which asks whether one can test if $F\colon X(k)\to \{0,1\}^k$ is correlated with a direct product function by querying $F$ on only $2$ inputs. Dinur and Kaufman conjectured that there exist bounded degree complexes with a direct product test in the small soundness regime. We resolve their conjecture by showing that for all $\delta>0$, there exists a family of high-dimensional expanders with degree $O_{\delta}(1)$ and a $2$-query direct product tester with soundness $\delta$. We use the characterization given by a subset of the authors and independently by Dikstein and Dinur, who showed that some form of non-Abelian coboundary expansion (which they called "Unique-Games coboundary expansion") is a necessary and sufficient condition for a complex to admit such direct product testers. Our main technical contribution is a general technique for showing coboundary expansion of complexes with coefficients in a non-Abelian group. This allows us to prove that the high dimensional expanders constructed by Chapman and Lubotzky satisfies the necessary conditions, thus admitting a 2-query direct product tester with small soundness.

A $d$-dimensional simplicial complex $X$ is said to support a direct product tester if any locally consistent function defined on its $k$-faces (where $k\ll d$) necessarily come from a function over its vertices. More precisely, a direct product tester has a distribution $\mu$ over pairs of $k$-faces $(A,A')$, and given query access to $F\colon X(k)\to\{0,1\}^k$ it samples $(A,A')\sim \mu$ and checks that $F[A]|_{A\cap A'} = F[A']|_{A\cap A'}$. The tester should have (1) the ``completeness property'', meaning that any assignment $F$ which is a direct product assignment passes the test with probability $1$, and (2) the ``soundness property'', meaning that if $F$ passes the test with probability $s$, then $F$ must be correlated with a direct product function. Dinur and Kaufman showed that a sufficiently good spectral expanding complex $X$ admits a direct product tester in the ``high soundness'' regime where $s$ is close to $1$. They asked whether there are high dimensional expanders that support direct product tests in the ``low soundness'', when $s$ is close to $0$. We give a characterization of high-dimensional expanders that support a direct product tester in the low soundness regime. We show that spectral expansion is insufficient, and the complex must additionally satisfy a variant of coboundary expansion, which we refer to as \emph{Unique-Games coboundary expanders}. Conversely, we show that this property is also sufficient to get direct product testers. This property can be seen as a high-dimensional generalization of the standard notion of coboundary expansion over non-Abelian groups for 2-dimensional complexes. It asserts that any locally consistent Unique-Games instance obtained using the low-level faces of the complex, must admit a good global solution.

$f \propto r^{-\alpha} \cdot (r+\gamma)^{-\beta}$ has been empirically shown more precise than a na\"ive power law $f\propto r^{-\alpha}$ to model the rank-frequency ($r$-$f$) relation of words in natural languages. This work shows that the only crucial parameter in the formulation is $\gamma$, which depicts the resistance to vocabulary growth on a corpus. A method of parameter estimation by searching an optimal $\gamma$ is proposed, where a ``zeroth word'' is introduced technically for the calculation. The formulation and parameters are further discussed with several case studies.

In Linear Logic ($\mathsf{LL}$), the exponential modality $!$ brings forth a distinction between non-linear proofs and linear proofs, where linear means using an argument exactly once. Differential Linear Logic ($\mathsf{DiLL}$) is an extension of Linear Logic which includes additional rules for $!$ which encode differentiation and the ability of linearizing proofs. On the other hand, Graded Linear Logic ($\mathsf{GLL}$) is a variation of Linear Logic in such a way that $!$ is now indexed over a semiring $R$. This $R$-grading allows for non-linear proofs of degree $r \in R$, such that the linear proofs are of degree $1 \in R$. There has been recent interest in combining these two variations of $\mathsf{LL}$ together and developing Graded Differential Linear Logic ($\mathsf{GDiLL}$). In this paper we present a sequent calculus for $\mathsf{GDiLL}$, as well as introduce its categorical semantics, which we call graded differential categories, using both coderelictions and deriving transformations. We prove that symmetric powers always give graded differential categories, and provide other examples of graded differential categories. We also discuss graded versions of (monoidal) coalgebra modalities, additive bialgebra modalities, and the Seely isomorphisms, as well as their implementations in the sequent calculus of $\mathsf{GDiLL}$.

If $G$ is a group, we say a subset $S$ of $G$ is product-free if the equation $xy=z$ has no solutions with $x,y,z \in S$. For $D \in \mathbb{N}$, a group $G$ is said to be $D$-quasirandom if the minimal dimension of a nontrivial complex irreducible representation of $G$ is at least $D$. Gowers showed that in a $D$-quasirandom finite group $G$, the maximal size of a product-free set is at most $|G|/D^{1/3}$. This disproved a longstanding conjecture of Babai and S\'os from 1985. For the special unitary group, $G=SU(n)$, Gowers observed that his argument yields an upper bound of $n^{-1/3}$ on the measure of a measurable product-free subset. In this paper, we improve Gowers' upper bound to $\exp(-cn^{1/3})$, where $c>0$ is an absolute constant. In fact, we establish something stronger, namely, product-mixing for measurable subsets of $SU(n)$ with measure at least $\exp(-cn^{1/3})$; for this product-mixing result, the $n^{1/3}$ in the exponent is sharp. Our approach involves introducing novel hypercontractive inequalities, which imply that the non-Abelian Fourier spectrum of the indicator function of a small set concentrates on high-dimensional irreducible representations. Our hypercontractive inequalities are obtained via methods from representation theory, harmonic analysis, random matrix theory and differential geometry. We generalize our hypercontractive inequalities from $SU(n)$ to an arbitrary $D$-quasirandom compact connected Lie group for $D$ at least an absolute constant, thereby extending our results on product-free sets to such groups. We also demonstrate various other applications of our inequalities to geometry (viz., non-Abelian Brunn-Minkowski type inequalities), mixing times, and the theory of growth in compact Lie groups.

In open-set recognition (OSR), a promising strategy is exploiting pseudo-unknown data outside given $K$ known classes as an additional $K$+$1$-th class to explicitly model potential open space. However, treating unknown classes without distinction is unequal for them relative to known classes due to the category-agnostic and scale-agnostic of the unknowns. This inevitably not only disrupts the inherent distributions of unknown classes but also incurs both class-wise and instance-wise imbalances between known and unknown classes. Ideally, the OSR problem should model the whole class space as $K$+$\infty$, but enumerating all unknowns is impractical. Since the core of OSR is to effectively model the boundaries of known classes, this means just focusing on the unknowns nearing the boundaries of targeted known classes seems sufficient. Thus, as a compromise, we convert the open classes from infinite to $K$, with a novel concept Target-Aware Universum (TAU) and propose a simple yet effective framework Dual Contrastive Learning with Target-Aware Universum (DCTAU). In details, guided by the targeted known classes, TAU automatically expands the unknown classes from the previous $1$ to $K$, effectively alleviating the distribution disruption and the imbalance issues mentioned above. Then, a novel Dual Contrastive (DC) loss is designed, where all instances irrespective of known or TAU are considered as positives to contrast with their respective negatives. Experimental results indicate DCTAU sets a new state-of-the-art.

We propose a new metric for robot state estimation based on the recently introduced $\text{SE}_2(3)$ Lie group definition. Our metric is related to prior metrics for SLAM but explicitly takes into account the linear velocity of the state estimate, improving over current pose-based trajectory analysis. This has the benefit of providing a single, quantitative metric to evaluate state estimation algorithms against, while being compatible with existing tools and libraries. Since ground truth data generally consists of pose data from motion capture systems, we also propose an approach to compute the ground truth linear velocity based on polynomial interpolation. Using Chebyshev interpolation and a pseudospectral parameterization, we can accurately estimate the ground truth linear velocity of the trajectory in an optimal fashion with best approximation error. We demonstrate how this approach performs on multiple robotic platforms where accurate state estimation is vital, and compare it to alternative approaches such as finite differences. The pseudospectral parameterization also provides a means of trajectory data compression as an additional benefit. Experimental results show our method provides a valid and accurate means of comparing state estimation systems, which is also easy to interpret and report.

北京阿比特科技有限公司