亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we analyze two classes of spectral volume (SV) methods for one-dimensional hyperbolic equations with degenerate variable coefficients. The two classes of SV methods are constructed by letting a piecewise $k$-th order ($k\ge 1$ is an arbitrary integer) polynomial function satisfy the local conservation law in each {\it control volume} obtained by dividing the interval element of the underlying mesh with $k$ Gauss-Legendre points (LSV) or Radaus points (RSV). The $L^2$-norm stability and optimal order convergence properties for both methods are rigorously proved for general non-uniform meshes. The superconvergence behaviors of the two SV schemes have been also investigated: it is proved that under the $L^2$ norm, the SV flux function approximates the exact flux with $(k+2)$-th order and the SV solution approximates the exact solution with $(k+\frac32)$-th order; some superconvergence behaviors at certain special points and for element averages have been also discovered and proved. Our theoretical findings are verified by several numerical experiments.

相關內容

The Oldenburger-Kolakoski sequence is the only infinite sequence over the alphabet $\{1,2\}$ that starts with $1$ and is its own run-length encoding. In the present work, we take a step back from this largely known and studied sequence by introducing some randomness in the choice of the letters written. This enables us to provide some results on the convergence of the density of $1$'s in the resulting sequence. When the choice of the letters is given by an infinite sequence of i.i.d. random variables or by a Markov chain, the average densities of letters converge. Moreover, in the case of i.i.d. random variables, we are able to prove that the densities even almost surely converge.

As the accuracy of machine learning models increases at a fast rate, so does their demand for energy and compute resources. On a low level, the major part of these resources is consumed by data movement between different memory units. Modern hardware architectures contain a form of fast memory (e.g., cache, registers), which is small, and a slow memory (e.g., DRAM), which is larger but expensive to access. We can only process data that is stored in fast memory, which incurs data movement (input/output-operations, or I/Os) between the two units. In this paper, we provide a rigorous theoretical analysis of the I/Os needed in sparse feedforward neural network (FFNN) inference. We establish bounds that determine the optimal number of I/Os up to a factor of 2 and present a method that uses a number of I/Os within that range. Much of the I/O-complexity is determined by a few high-level properties of the FFNN (number of inputs, outputs, neurons, and connections), but if we want to get closer to the exact lower bound, the instance-specific sparsity patterns need to be considered. Departing from the 2-optimal computation strategy, we show how to reduce the number of I/Os further with simulated annealing. Complementing this result, we provide an algorithm that constructively generates networks with maximum I/O-efficiency for inference. We test the algorithms and empirically verify our theoretical and algorithmic contributions. In our experiments on real hardware we observe speedups of up to 45$\times$ relative to the standard way of performing inference.

This paper proposes a general optimization framework to improve the spectral and energy efficiency (EE) of ultra-reliable low-latency communication (URLLC) reconfigurable intelligent surface (RIS)-assisted interference-limited systems with finite block length (FBL). This framework can be applied to any interference-limited system with treating interference as noise as the decoding strategy at receivers. Additionally, the framework can solve a large variety of optimization problems in which the objective and/or constraints are linear functions of the rates and/or EE of users. We consider a multi-cell broadcast channel as an example and show how this framework can be specialized to solve the minimum-weighted rate, weighted sum rate, global EE and weighted EE of the system. In addition to regular RIS, we consider simultaneous-transfer-and-receive (STAR)-RIS in which each passive RIS component can simultaneously reflect and transmit signals. We make realistic assumptions regarding the (STAR-)RIS by considering three different feasibility sets for the components of either regular RIS or STAR-RIS. We show that RIS can substantially increase the spectral and EE of RIS-assisted URLLC systems if the reflecting coefficients are properly optimized. Moreover, we show that STAR-RIS can outperform a regular RIS when the regular RIS cannot cover all the users.

In this paper, we propose a Dimension-Reduced Second-Order Method (DRSOM) for convex and nonconvex (unconstrained) optimization. Under a trust-region-like framework, our method preserves the convergence of the second-order method while using only curvature information in a few directions. Consequently, the computational overhead of our method remains comparable to the first-order such as the gradient descent method. Theoretically, we show that the method has a local quadratic convergence and a global convergence rate of $O(\epsilon^{-3/2})$ to satisfy the first-order and second-order conditions if the subspace satisfies a commonly adopted approximated Hessian assumption. We further show that this assumption can be removed if we perform one \emph{corrector step} (using a Krylov method, for example) periodically at the end stage of the algorithm. The applicability and performance of DRSOM are exhibited by various computational experiments, particularly in machine learning and deep learning. For neural networks, our preliminary implementation seems to gain computational advantages in terms of training accuracy and iteration complexity over state-of-the-art first-order methods such as SGD and ADAM.

We generalize the familiar notion of periodicity in sequences to a new kind of pseudoperiodicity, and we prove some basic results about it. We revisit the results of a 2012 paper of Shevelev and reprove his results in a simpler and more unified manner, and provide a complete answer to one of his previously unresolved questions. We consider finding words with specific pseudoperiods and having the smallest possible critical exponent. Finally, we consider the problem of determining whether a finite word is pseudoperiodic of a given size, and show that it is NP-complete.

We consider a mixed dimensional elliptic partial differential equation posed in a bulk domain with a large number of embedded interfaces. In particular, we study well-posedness of the problem and regularity of the solution. We also propose a fitted finite element approximation and prove an a priori error bound. For the solution of the arising linear system we propose and analyze an iterative method based on subspace decomposition. Finally, we present numerical experiments and achieve rapid convergence using the proposed preconditioner, confirming our theoretical findings.

Random walks on graphs are an essential primitive for many randomised algorithms and stochastic processes. It is natural to ask how much can be gained by running $k$ multiple random walks independently and in parallel. Although the cover time of multiple walks has been investigated for many natural networks, the problem of finding a general characterisation of multiple cover times for worst-case start vertices (posed by Alon, Avin, Kouck\'y, Kozma, Lotker, and Tuttle~in 2008) remains an open problem. First, we improve and tighten various bounds on the stationary cover time when $k$ random walks start from vertices sampled from the stationary distribution. For example, we prove an unconditional lower bound of $\Omega((n/k) \log n)$ on the stationary cover time, holding for any $n$-vertex graph $G$ and any $1 \leq k =o(n\log n )$. Secondly, we establish the stationary cover times of multiple walks on several fundamental networks up to constant factors. Thirdly, we present a framework characterising worst-case cover times in terms of stationary cover times and a novel, relaxed notion of mixing time for multiple walks called the partial mixing time. Roughly speaking, the partial mixing time only requires a specific portion of all random walks to be mixed. Using these new concepts, we can establish (or recover) the worst-case cover times for many networks including expanders, preferential attachment graphs, grids, binary trees and hypercubes.

Partial differential equations (PDEs) are important tools to model physical systems, and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works like a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDE, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude.

In this paper, we investigate the strong convergence of the semi-implicit Euler-Maruyama (EM) method for stochastic differential equations driven by a class of L\'evy processes. Comparing to existing results, we obtain the convergence order of the numerical scheme and discover its relation with the parameters of the class of L\'evy processes. In addition, the existence and uniqueness of numerical invariant measure of the semi-implicit EM method is studied and its convergence to the underlying invariant measure is also proved. Numerical examples are provided to confirm our theoretical results.

Dye experimentation is a widely used method in experimental fluid mechanics for flow analysis or for the study of the transport of particles within a fluid. This technique is particularly useful in biomedical diagnostic applications ranging from hemodynamic analysis of cardiovascular systems to ocular circulation. However, simulating dyes governed by convection-diffusion partial differential equations (PDEs) can also be a useful post-processing analysis approach for computational fluid dynamics (CFD) applications. Such simulations can be used to identify the relative significance of different spatial subregions in particular time intervals of interest in an unsteady flow field. Additionally, dye evolution is closely related to non-discrete particle residence time (PRT) calculations that are governed by similar PDEs. PRT is a widely used metric for various fluid dynamics applications (e.g., environmental fluids, biological flows) and is a well-accepted biomarker for cardiovascular diseases since it is linked to thrombus formation. This contribution introduces a pseudo-spectral method based on Fourier continuation (FC) for conducting dye simulations and non-discrete particle residence time calculations without numerical diffusion errors. Convergence and error analyses are performed with both manufactured and analytical solutions. The methodology is applied to three distinct physical/physiological cases: 1) flow over a two-dimensional (2D) cavity; 2) pulsatile flow in a simplified partially-grafted aortic dissection model; and 3) non-Newtonian blood flow in a Fontan graft. Although velocity data is provided in this work by numerical simulation, the proposed approach can also be applied to velocity data collected through experimental techniques such as from particle image velocimetry.

北京阿比特科技有限公司