We consider a set of challenging sequential manipulation puzzles, where an agent has to interact with multiple movable objects and navigate narrow passages. Such settings are notoriously difficult for Task-and-Motion Planners, as they require interdependent regrasps and solving hard motion planning problems. In this paper, we propose to search over sequences of easier pick-and-place subproblems, which can lead to the solution of the manipulation puzzle. Our method combines a heuristic-driven forward search of subproblems with an optimization-based Task-and-Motion Planning solver. To guide the search, we introduce heuristics to generate and prioritize useful subgoals. We evaluate our approach on various manually designed and automatically generated scenes, demonstrating the benefits of auxiliary subproblems in sequential manipulation planning.
The cold start problem, where new users or items have no interaction history, remains a critical challenge in recommender systems (RS). A common solution involves using Knowledge Graphs (KG) to train entity embeddings or Graph Neural Networks (GNNs). Since KGs incorporate auxiliary data and not just user/item interactions, these methods can make relevant recommendations for cold users or items. Graph Reasoning (GR) methods, however, find paths from users to items to recommend using relations in the KG and, in the context of RS, have been used for interpretability. In this study, we propose GRECS: a framework for adapting GR to cold start recommendations. By utilizing explicit paths starting for users rather than relying only on entity embeddings, GRECS can find items corresponding to users' preferences by navigating the graph, even when limited information about users is available. Our experiments show that GRECS mitigates the cold start problem and outperforms competitive baselines across 5 standard datasets while being explainable. This study highlights the potential of GR for developing explainable recommender systems better suited for managing cold users and items.
We study a Bayesian persuasion game where a sender wants to persuade a receiver to take a binary action, such as purchasing a product. The sender is informed about the (binary) state of the world, such as whether the quality of the product is high or low, but only has limited information about the receiver's beliefs and utilities. Motivated by customer surveys, user studies, and recent advances in AI, we allow the sender to learn more about the receiver by querying an oracle that simulates the receiver's behavior. After a fixed number of queries, the sender commits to a messaging policy and the receiver takes the action that maximizes her expected utility given the message she receives. We characterize the sender's optimal messaging policy given any distribution over receiver types. We then design a polynomial-time querying algorithm that optimizes the sender's expected utility in this game. We also consider approximate oracles, more general query structures, and costly queries.
We consider the hybrid reinforcement learning setting where the agent has access to both offline data and online interactive access. While Reinforcement Learning (RL) research typically assumes offline data contains complete action, reward and transition information, datasets with only state information (also known as observation-only datasets) are more general, abundant and practical. This motivates our study of the hybrid RL with observation-only offline dataset framework. While the task of competing with the best policy "covered" by the offline data can be solved if a reset model of the environment is provided (i.e., one that can be reset to any state), we show evidence of hardness when only given the weaker trace model (i.e., one can only reset to the initial states and must produce full traces through the environment), without further assumption of admissibility of the offline data. Under the admissibility assumptions -- that the offline data could actually be produced by the policy class we consider -- we propose the first algorithm in the trace model setting that provably matches the performance of algorithms that leverage a reset model. We also perform proof-of-concept experiments that suggest the effectiveness of our algorithm in practice.
We consider the private classical capacity of a quantum wiretap channel, where the users (sender Alice, receiver Bob, and eavesdropper Eve) have access to the resource of a shared quantum state, additionally to their channel inputs and outputs. An extreme case is maximal entanglement or a secret key between Alice and Bob, both of which would allow for onetime padding the message. But here both the wiretap channel and the shared state are general. In the other extreme case that the state is trivial, we recover the wiretap channel and its private capacity [N. Cai, A. Winter and R. W. Yeung, Probl. Inform. Transm. 40(4):318-336, 2004]. We show how to use the given resource state to build a code for secret classical communication. Our main result is a lower bound on the assisted private capacity, which asymptotically meets the multi-letter converse and which encompasses all sorts of previous results as special cases.
Prophet inequalities are fundamental optimal stopping problems, where a decision-maker observes sequentially items with values sampled independently from known distributions, and must decide at each new observation to either stop and gain the current value or reject it irrevocably and move to the next step. This model is often too pessimistic and does not adequately represent real-world online selection processes. Potentially, rejected items can be revisited and a fraction of their value can be recovered. To analyze this problem, we consider general decay functions $D_1,D_2,\ldots$, quantifying the value to be recovered from a rejected item, depending on how far it has been observed in the past. We analyze how lookback improves, or not, the competitive ratio in prophet inequalities in different order models. We show that, under mild monotonicity assumptions on the decay functions, the problem can be reduced to the case where all the decay functions are equal to the same function $x \mapsto \gamma x$, where $\gamma = \inf_{x>0} \inf_{j \geq 1} D_j(x)/x$. Consequently, we focus on this setting and refine the analyses of the competitive ratios, with upper and lower bounds expressed as increasing functions of $\gamma$.
Probabilistic integral circuits (PICs) have been recently introduced as probabilistic models enjoying the key ingredient behind expressive generative models: continuous latent variables (LVs). PICs are symbolic computational graphs defining continuous LV models as hierarchies of functions that are summed and multiplied together, or integrated over some LVs. They are tractable if LVs can be analytically integrated out, otherwise they can be approximated by tractable probabilistic circuits (PC) encoding a hierarchical numerical quadrature process, called QPCs. So far, only tree-shaped PICs have been explored, and training them via numerical quadrature requires memory-intensive processing at scale. In this paper, we address these issues, and present: (i) a pipeline for building DAG-shaped PICs out of arbitrary variable decompositions, (ii) a procedure for training PICs using tensorized circuit architectures, and (iii) neural functional sharing techniques to allow scalable training. In extensive experiments, we showcase the effectiveness of functional sharing and the superiority of QPCs over traditional PCs.
We consider an active learning setting where a learner is presented with a pool S of n unlabeled examples belonging to a domain X and asks queries to find the underlying labeling that agrees with a target concept h^* \in H. In contrast to traditional active learning that queries a single example for its label, we study more general region queries that allow the learner to pick a subset of the domain T \subset X and a target label y and ask a labeler whether h^*(x) = y for every example in the set T \cap S. Such more powerful queries allow us to bypass the limitations of traditional active learning and use significantly fewer rounds of interactions to learn but can potentially lead to a significantly more complex query language. Our main contribution is quantifying the trade-off between the number of queries and the complexity of the query language used by the learner. We measure the complexity of the region queries via the VC dimension of the family of regions. We show that given any hypothesis class H with VC dimension d, one can design a region query family Q with VC dimension O(d) such that for every set of n examples S \subset X and every h^* \in H, a learner can submit O(d log n) queries from Q to a labeler and perfectly label S. We show a matching lower bound by designing a hypothesis class H with VC dimension d and a dataset S \subset X of size n such that any learning algorithm using any query class with VC dimension less than O(d) must make poly(n) queries to label S perfectly. Finally, we focus on well-studied hypothesis classes including unions of intervals, high-dimensional boxes, and d-dimensional halfspaces, and obtain stronger results. In particular, we design learning algorithms that (i) are computationally efficient and (ii) work even when the queries are not answered based on the learner's pool of examples S but on some unknown superset L of S
User representation is crucial for recommendation systems as it helps to deliver personalized recommendations by capturing user preferences and behaviors in low-dimensional vectors. High-quality user embeddings can capture subtle preferences, enable precise similarity calculations, and adapt to changing preferences over time to maintain relevance. The effectiveness of recommendation systems depends significantly on the quality of user embedding. We propose to asynchronously learn high fidelity user embeddings for billions of users each day from sequence based multimodal user activities in Meta platforms through a Transformer-like large scale feature learning module. The async learned user representations embeddings (ALURE) are further converted to user similarity graphs through graph learning and then combined with user realtime activities to retrieval highly related ads candidates for the entire ads delivery system. Our method shows significant gains in both offline and online experiments.
The problem of reward design examines the interaction between a leader and a follower, where the leader aims to shape the follower's behavior to maximize the leader's payoff by modifying the follower's reward function. Current approaches to reward design rely on an accurate model of how the follower responds to reward modifications, which can be sensitive to modeling inaccuracies. To address this issue of sensitivity, we present a solution that offers robustness against uncertainties in modeling the follower, including 1) how the follower breaks ties in the presence of nonunique best responses, 2) inexact knowledge of how the follower perceives reward modifications, and 3) bounded rationality of the follower. Our robust solution is guaranteed to exist under mild conditions and can be obtained numerically by solving a mixed-integer linear program. Numerical experiments on multiple test cases demonstrate that our solution improves robustness compared to the standard approach without incurring significant additional computing costs.
Deep nonparametric regression, characterized by the utilization of deep neural networks to learn target functions, has emerged as a focus of research attention in recent years. Despite considerable progress in understanding convergence rates, the absence of asymptotic properties hinders rigorous statistical inference. To address this gap, we propose a novel framework that transforms the deep estimation paradigm into a platform conducive to conditional mean estimation, leveraging the conditional diffusion model. Theoretically, we develop an end-to-end convergence rate for the conditional diffusion model and establish the asymptotic normality of the generated samples. Consequently, we are equipped to construct confidence regions, facilitating robust statistical inference. Furthermore, through numerical experiments, we empirically validate the efficacy of our proposed methodology.