Clustered data are common in biomedical research. Observations in the same cluster are often more similar to each other than to observations from other clusters. The intraclass correlation coefficient (ICC), first introduced by R. A. Fisher, is frequently used to measure this degree of similarity. However, the ICC is sensitive to extreme values and skewed distributions, and depends on the scale of the data. It is also not applicable to ordered categorical data. We define the rank ICC as a natural extension of Fisher's ICC to the rank scale, and describe its corresponding population parameter. The rank ICC is simply interpreted as the rank correlation between a random pair of observations from the same cluster. We also extend the definition when the underlying distribution has more than two hierarchies. We describe estimation and inference procedures, show the asymptotic properties of our estimator, conduct simulations to evaluate its performance, and illustrate our method in three real data examples with skewed data, count data, and three-level ordered categorical data.
Following complex instructions in conversational assistants can be quite daunting due to the shorter attention and memory spans when compared to reading the same instructions. Hence, when conversational assistants walk users through the steps of complex tasks, there is a need to structure the task into manageable pieces of information of the right length and complexity. In this paper, we tackle the recipes domain and convert reading structured instructions into conversational structured ones. We annotated the structure of instructions according to a conversational scenario, which provided insights into what is expected in this setting. To computationally model the conversational step's characteristics, we tested various Transformer-based architectures, showing that a token-based approach delivers the best results. A further user study showed that users tend to favor steps of manageable complexity and length, and that the proposed methodology can improve the original web-based instructional text. Specifically, 86% of the evaluated tasks were improved from a conversational suitability point of view.
The inference of topological principles is a key problem in structured reconstruction. We observe that wrongly predicted topological relationships are often incurred by the lack of holistic geometry clues in low-level features. Inspired by the fact that massive signals can be compactly described with frequency analysis, we experimentally explore the efficiency and tendency of learning structure geometry in the frequency domain. Accordingly, we propose a frequency-domain feature learning strategy (F-Learn) to fuse scattered geometric fragments holistically for topology-intact structure reasoning. Benefiting from the parsimonious design, the F-Learn strategy can be easily deployed into a deep reconstructor with a lightweight model modification. Experiments demonstrate that the F-Learn strategy can effectively introduce structure awareness into geometric primitive detection and topology inference, bringing significant performance improvement to final structured reconstruction. Code and pre-trained models are available at //github.com/Geo-Tell/F-Learn.
Automatic speech recognition (ASR) systems have been shown to have large quality disparities between the language varieties they are intended or expected to recognize. One way to mitigate this is to train or fine-tune models with more representative datasets. But this approach can be hindered by limited in-domain data for training and evaluation. We propose a new way to improve the robustness of a US English short-form speech recognizer using a small amount of out-of-domain (long-form) African American English (AAE) data. We use CORAAL, YouTube and Mozilla Common Voice to train an audio classifier to approximately output whether an utterance is AAE or some other variety including Mainstream American English (MAE). By combining the classifier output with coarse geographic information, we can select a subset of utterances from a large corpus of untranscribed short-form queries for semi-supervised learning at scale. Fine-tuning on this data results in a 38.5% relative word error rate disparity reduction between AAE and MAE without reducing MAE quality.
People use web search engines to find information before forming opinions, which can lead to practical decisions with different levels of impact. The cognitive effort of search can leave opinionated users vulnerable to cognitive biases, e.g., the confirmation bias. In this paper, we investigate whether stance labels and their explanations can help users consume more diverse search results. We automatically classify and label search results on three topics (i.e., intellectual property rights, school uniforms, and atheism) as against, neutral, and in favor, and generate explanations for these labels. In a user study (N =203), we then investigate whether search result stance bias (balanced vs biased) and the level of explanation (plain text, label only, label and explanation) influence the diversity of search results clicked. We find that stance labels and explanations lead to a more diverse search result consumption. However, we do not find evidence for systematic opinion change among users in this context. We believe these results can help designers of search engines to make more informed design decisions.
Nonlinear metamaterials with tailored mechanical properties have applications in engineering, medicine, robotics, and beyond. While modeling their macromechanical behavior is challenging in itself, finding structure parameters that lead to ideal approximation of high-level performance goals is a challenging task. In this work, we propose Neural Metamaterial Networks (NMN) -- smooth neural representations that encode the nonlinear mechanics of entire metamaterial families. Given structure parameters as input, NMN return continuously differentiable strain energy density functions, thus guaranteeing conservative forces by construction. Though trained on simulation data, NMN do not inherit the discontinuities resulting from topological changes in finite element meshes. They instead provide a smooth map from parameter to performance space that is fully differentiable and thus well-suited for gradient-based optimization. On this basis, we formulate inverse material design as a nonlinear programming problem that leverages neural networks for both objective functions and constraints. We use this approach to automatically design materials with desired strain-stress curves, prescribed directional stiffness and Poisson ratio profiles. We furthermore conduct ablation studies on network nonlinearities and show the advantages of our approach compared to native-scale optimization.
Due to the large-scale availability of data, machine learning (ML) algorithms are being deployed in distributed topologies, where different nodes collaborate to train ML models over their individual data by exchanging model-related information (e.g., gradients) with a central server. However, distributed learning schemes are notably vulnerable to two threats. First, Byzantine nodes can single-handedly corrupt the learning by sending incorrect information to the server, e.g., erroneous gradients. The standard approach to mitigate such behavior is to use a non-linear robust aggregation method at the server. Second, the server can violate the privacy of the nodes. Recent attacks have shown that exchanging (unencrypted) gradients enables a curious server to recover the totality of the nodes' data. The use of homomorphic encryption (HE), a gold standard security primitive, has extensively been studied as a privacy-preserving solution to distributed learning in non-Byzantine scenarios. However, due to HE's large computational demand especially for high-dimensional ML models, there has not yet been any attempt to design purely homomorphic operators for non-linear robust aggregators. In this work, we present SABLE, the first completely homomorphic and Byzantine robust distributed learning algorithm. SABLE essentially relies on a novel plaintext encoding method that enables us to implement the robust aggregator over batching-friendly BGV. Moreover, this encoding scheme also accelerates state-of-the-art homomorphic sorting with larger security margins and smaller ciphertext size. We perform extensive experiments on image classification tasks and show that our algorithm achieves practical execution times while matching the ML performance of its non-private counterpart.
Invariance describes transformations that do not alter data's underlying semantics. Neural networks that preserve natural invariance capture good inductive biases and achieve superior performance. Hence, modern networks are handcrafted to handle well-known invariances (ex. translations). We propose a framework to learn novel network architectures that capture data-dependent invariances via pruning. Our learned architectures consistently outperform dense neural networks on both vision and tabular datasets in both efficiency and effectiveness. We demonstrate our framework on multiple deep learning models across 3 vision and 40 tabular datasets.
Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.
Mining graph data has become a popular research topic in computer science and has been widely studied in both academia and industry given the increasing amount of network data in the recent years. However, the huge amount of network data has posed great challenges for efficient analysis. This motivates the advent of graph representation which maps the graph into a low-dimension vector space, keeping original graph structure and supporting graph inference. The investigation on efficient representation of a graph has profound theoretical significance and important realistic meaning, we therefore introduce some basic ideas in graph representation/network embedding as well as some representative models in this chapter.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.