The question "What is real?" can be traced back to the shadows in Plato's cave. Two thousand years later, Rene Descartes lacked knowledge about arguing against an evil deceiver feeding us the illusion of sensation. Descartes' epistemological concept later led to various theories of sensory experiences. The concept of "illusionism", proposing that even the very conscious experience we have is an illusion, is not only a red-pill scenario found in the 1999 science fiction movie "The Matrix" but is also a philosophical concept promoted by modern tinkers, most prominently by Daniel Dennett. Reflection upon a possible simulation and our perceived reality was beautifully visualized in "The Matrix", bringing the old ideas of Descartes to coffee houses around the world. Irish philosopher Bishop Berkeley was the father of what was later coined as "subjective idealism", basically stating that "what you perceive is real". With the advent of quantum technologies based on the control of individual fundamental particles, the question of whether our universe is a simulation isn't just intriguing. Our ever-advancing understanding of fundamental physical processes will likely lead us to build quantum computers utilizing quantum effects for simulating nature quantum-mechanically in all complexity, as famously envisioned by Richard Feynman. In this article, we outline constraints on the limits of computability and predictability in/of the universe, which we then use to design experiments allowing for first conclusions as to whether we participate in a simulation chain. Eventually, in a simulation in which the computer simulating a universe is governed by the same physical laws as the simulation, the exhaustion of computational resources will halt all simulations down the simulation chain unless an external programmer intervenes, which we may be able to observe.
Industrial control systems (ICSs) are types of cyber-physical systems in which programs, written in languages such as ladder logic or structured text, control industrial processes through sensing and actuating. Given the use of ICSs in critical infrastructure, it is important to test their resilience against manipulations of sensor/actuator inputs. Unfortunately, existing methods fail to test them comprehensively, as they typically focus on finding the simplest-to-craft manipulations for a testing goal, and are also unable to determine when a test is simply a minor permutation of another, i.e. based on the same causal events. In this work, we propose a guided fuzzing approach for finding 'meaningfully different' tests for an ICS via a general formalisation of sensor/actuator-manipulation strategies. Our algorithm identifies the causal events in a test, generalises them to an equivalence class, and then updates the fuzzing strategy so as to find new tests that are causally different from those already identified. An evaluation of our approach on a real-world water treatment system shows that it is able to find 106% more causally different tests than the most comparable fuzzer. While we focus on diversifying the test suite of an ICS, our formalisation may be useful for other fuzzers that intercept communication channels.
Overparametrization is one of the most surprising and notorious phenomena in machine learning. Recently, there have been several efforts to study if, and how, Quantum Neural Networks (QNNs) acting in the absence of hardware noise can be overparametrized. In particular, it has been proposed that a QNN can be defined as overparametrized if it has enough parameters to explore all available directions in state space. That is, if the rank of the Quantum Fisher Information Matrix (QFIM) for the QNN's output state is saturated. Here, we explore how the presence of noise affects the overparametrization phenomenon. Our results show that noise can "turn on" previously-zero eigenvalues of the QFIM. This enables the parametrized state to explore directions that were otherwise inaccessible, thus potentially turning an overparametrized QNN into an underparametrized one. For small noise levels, the QNN is quasi-overparametrized, as large eigenvalues coexists with small ones. Then, we prove that as the magnitude of noise increases all the eigenvalues of the QFIM become exponentially suppressed, indicating that the state becomes insensitive to any change in the parameters. As such, there is a pull-and-tug effect where noise can enable new directions, but also suppress the sensitivity to parameter updates. Finally, our results imply that current QNN capacity measures are ill-defined when hardware noise is present.
The simulation of quantum circuits on classical computers is an important problem in quantum computing. Such simulation requires representations of distributions over very large sets of basis-vectors, and recent work has use symbolic data structures such as Binary Decision Diagrams (BDDs) for this purpose. However, as of now, there is no open-source, extensible system for such symbolic simulation. In this tool paper, we present Quasimodo, an extensible, open-source Python library that fills this gap in the literature. Quasimodo allows simulations of quantum circuits, checking properties of the outputs of quantum circuits, and debugging quantum circuits. It also allows the user to choose from among several symbolic data structures -- both unweighted and weighted BDDs, and a recent structure called CFLOBDDs -- and can be easily extended to support other symbolic data structures.
Probabilistic predictions can be evaluated through comparisons with observed label frequencies, that is, through the lens of calibration. Recent scholarship on algorithmic fairness has started to look at a growing variety of calibration-based objectives under the name of multi-calibration but has still remained fairly restricted. In this paper, we explore and analyse forms of evaluation through calibration by making explicit the choices involved in designing calibration scores. We organise these into three grouping choices and a choice concerning the agglomeration of group errors. This provides a framework for comparing previously proposed calibration scores and helps to formulate novel ones with desirable mathematical properties. In particular, we explore the possibility of grouping datapoints based on their input features rather than on predictions and formally demonstrate advantages of such approaches. We also characterise the space of suitable agglomeration functions for group errors, generalising previously proposed calibration scores. Complementary to such population-level scores, we explore calibration scores at the individual level and analyse their relationship to choices of grouping. We draw on these insights to introduce and axiomatise fairness deviation measures for population-level scores. We demonstrate that with appropriate choices of grouping, these novel global fairness scores can provide notions of (sub-)group or individual fairness.
We answer an open complexity question by Hofman, Lasota, Mayr, Totzke (LMCS 2016) for simulation preorder on the class of succinct one-counter nets (i.e., one-counter automata with no zero tests where counter increments and decrements are integers written in binary); the problem was known to be PSPACE-hard and in EXPSPACE. We show that all relations between bisimulation equivalence and simulation preorder are EXPSPACE-hard for these nets; simulation preorder is thus EXPSPACE-complete. The result is proven by a reduction from reachability games whose EXPSPACE-completeness in the case of succinct one-counter nets was shown by Hunter (RP 2015), by using other results. We also provide a direct self-contained EXPSPACE-completeness proof for a special case of such reachability games, namely for a modification of countdown games that were shown EXPTIME-complete by Jurdzinski, Sproston, Laroussinie (LMCS 2008); in our modification the initial counter value is not given but is freely chosen by the first player. We also present an alternative proof for the upper bound by Hofman et al. In particular, we give a new simplified proof of the belt theorem that yields a simple graphic presentation of simulation preorder on (non-succinct) one-counter nets and leads to a polynomial-space algorithm (which is trivially extended to an exponential-space algorithm for succinct one-counter nets).
Current research on pedestrian behavior understanding focuses on the dynamics of pedestrians and makes strong assumptions about their perceptual abilities. For instance, it is often presumed that pedestrians have omnidirectional view of the scene around them. In practice, human visual system has a number of limitations, such as restricted field of view (FoV) and range of sensing, which consequently affect decision-making and overall behavior of the pedestrians. By including explicit modeling of pedestrian perception, we can better understand its effect on their decision-making. To this end, we propose an agent-based pedestrian behavior model Intend-Wait-Perceive-Cross with three novel elements: field of vision, working memory, and scanning strategy, all motivated by findings from behavioral literature. Through extensive experimentation we investigate the effects of perceptual limitations on safe crossing decisions and demonstrate how they contribute to detectable changes in pedestrian behaviors.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.