亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A wide range of applications in science and engineering involve a PDE model in a domain with perforations, such as perforated metals or air filters. Solving such perforated domain problems suffers from computational challenges related to resolving the scale imposed by the geometries of perforations. We propose a neural network-based mesh-free approach for perforated domain problems. The method is robust and efficient in capturing various configuration scales, including the averaged macroscopic behavior of the solution that involves a multiscale nature induced by small perforations. The new approach incorporates the derivative-free loss method that uses a stochastic representation or the Feynman-Kac formulation. In particular, we implement the Neumann boundary condition for the derivative-free loss method to handle the interface between the domain and perforations. A suite of stringent numerical tests is provided to support the proposed method's efficacy in handling various perforation scales.

相關內容

Reachability and other path-based measures on temporal graphs can be used to understand spread of infection, information, and people in modelled systems. Due to delays and errors in reporting, temporal graphs derived from data are unlikely to perfectly reflect reality, especially with respect to the precise times at which edges appear. To reflect this uncertainty, we consider a model in which some number $\zeta$ of edge appearances may have their timestamps perturbed by $\pm\delta$ for some $\delta$. Within this model, we investigate temporal reachability and consider the problem of determining the maximum number of vertices any vertex can reach under these perturbations. We show that this problem is intractable in general but is efficiently solvable when $\zeta$ is sufficiently large. We also give algorithms which solve this problem in several restricted settings. We complement this with some contrasting results concerning the complexity of related temporal eccentricity problems under perturbation.

Language models have been effective in a wide range of applications, yet the most sophisticated models are often proprietary. For example, GPT-4 by OpenAI and various models by Anthropic are expensive and consume substantial energy. In contrast, the open-source community has produced competitive models, like Llama3. Furthermore, niche-specific smaller language models, such as those tailored for legal, medical or financial tasks, have outperformed their proprietary counterparts. This paper introduces a novel approach that employs \textit{functional tokens} to integrate \textbf{multiple open-source models}, each optimized for particular tasks. Our newly developed Octopus v4 model leverages \textit{functional tokens} to intelligently direct user queries to the most appropriate vertical model and reformat the query to achieve the best performance. Octopus v4, an evolution of the Octopus v1, v2, and v3 models, excels in selection and parameter understanding and reformatting. Additionally, we explore the use of graph as a versatile data structure that effectively coordinates multiple open-source models by harnessing the capabilities of the Octopus model and \textit{functional tokens}. Use our open-sourced GitHub (\url{//www.nexa4ai.com/}) to try Octopus v4 models (\url{//huggingface.co/NexaAIDev/Octopus-v4}), and contrite to a larger graph of language models. By activating models less than 10B parameters, we achieved SOTA MMLU score of 74.8 among the same level models.

In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue $\lambda$ and eigenfunction $u$ separately, we treat the eigenpair $(\lambda, u)$ as one element in a product space $\mathbb R \times H_0^1(\Omega)$. Then in the presented multigrid method, only one discrete linear boundary value problem needs to be solved for each level of the multigrid sequence. Because we avoid solving large-scale nonlinear eigenvalue problems directly, the overall efficiency is significantly improved. The optimal error estimate and linear computational complexity can be derived simultaneously. In addition, we also provide an improved multigrid method coupled with a mixing scheme to further guarantee the convergence and stability of the iteration scheme. More importantly, we prove convergence for the residuals after each iteration step. For nonlinear eigenvalue problems, such theoretical analysis is missing from the existing literatures on the mixing iteration scheme.

We study the data-driven selection of causal graphical models using constraint-based algorithms, which determine the existence or non-existence of edges (causal connections) in a graph based on testing a series of conditional independence hypotheses. In settings where the ultimate scientific goal is to use the selected graph to inform estimation of some causal effect of interest (e.g., by selecting a valid and sufficient set of adjustment variables), we argue that a "cautious" approach to graph selection should control the probability of falsely removing edges and prefer dense, rather than sparse, graphs. We propose a simple inversion of the usual conditional independence testing procedure: to remove an edge, test the null hypothesis of conditional association greater than some user-specified threshold, rather than the null of independence. This equivalence testing formulation to testing independence constraints leads to a procedure with desriable statistical properties and behaviors that better match the inferential goals of certain scientific studies, for example observational epidemiological studies that aim to estimate causal effects in the face of causal model uncertainty. We illustrate our approach on a data example from environmental epidemiology.

Model averaging (MA), a technique for combining estimators from a set of candidate models, has attracted increasing attention in machine learning and statistics. In the existing literature, there is an implicit understanding that MA can be viewed as a form of shrinkage estimation that draws the response vector towards the subspaces spanned by the candidate models. This paper explores this perspective by establishing connections between MA and shrinkage in a linear regression setting with multiple nested models. We first demonstrate that the optimal MA estimator is the best linear estimator with monotonically non-increasing weights in a Gaussian sequence model. The Mallows MA (MMA), which estimates weights by minimizing the Mallows' $C_p$ over the unit simplex, can be viewed as a variation of the sum of a set of positive-part Stein estimators. Indeed, the latter estimator differs from the MMA only in that its optimization of Mallows' $C_p$ is within a suitably relaxed weight set. Motivated by these connections, we develop a novel MA procedure based on a blockwise Stein estimation. The resulting Stein-type MA estimator is asymptotically optimal across a broad parameter space when the variance is known. Numerical results support our theoretical findings. The connections established in this paper may open up new avenues for investigating MA from different perspectives. A discussion on some topics for future research concludes the paper.

Deep learning models can exhibit what appears to be a sudden ability to solve a new problem as training time ($T$), training data ($D$), or model size ($N$) increases, a phenomenon known as emergence. In this paper, we present a framework where each new ability (a skill) is represented as a basis function. We solve a simple multi-linear model in this skill-basis, finding analytic expressions for the emergence of new skills, as well as for scaling laws of the loss with training time, data size, model size, and optimal compute ($C$). We compare our detailed calculations to direct simulations of a two-layer neural network trained on multitask sparse parity, where the tasks in the dataset are distributed according to a power-law. Our simple model captures, using a single fit parameter, the sigmoidal emergence of multiple new skills as training time, data size or model size increases in the neural network.

We study a query model of computation in which an n-vertex k-hypergraph can be accessed only via its independence oracle or via its colourful independence oracle, and each oracle query may incur a cost depending on the size of the query. In each of these models, we obtain oracle algorithms to approximately count the hypergraph's edges, and we unconditionally prove that no oracle algorithm for this problem can have significantly smaller worst-case oracle cost than our algorithms.

In this paper, we develop a general framework for multicontinuum homogenization in perforated domains. The simulations of problems in perforated domains are expensive and, in many applications, coarse-grid macroscopic models are developed. Many previous approaches include homogenization, multiscale finite element methods, and so on. In our paper, we design multicontinuum homogenization based on our recently proposed framework. In this setting, we distinguish different spatial regions in perforations based on their sizes. For example, very thin perforations are considered as one continua, while larger perforations are considered as another continua. By differentiating perforations in this way, we are able to predict flows in each of them more accurately. We present a framework by formulating cell problems for each continuum using appropriate constraints for the solution averages and their gradients. These cell problem solutions are used in a multiscale expansion and in deriving novel macroscopic systems for multicontinuum homogenization. Our proposed approaches are designed for problems without scale separation. We present numerical results for two continuum problems and demonstrate the accuracy of the proposed methods.

We present a survey of the two-dimensional and tensorial structure of the lifting doctrine in constructive domain theory, i.e. in the theory of directed-complete partial orders (dcpos) over an arbitrary elementary topos. We establish the universal property of lifting of dcpos as the Sierpi\'nski cone, from which we deduce (1) that lifting forms a Kock-Z\"oberlein doctrine, (2) that lifting algebras, pointed dcpos, and inductive partial orders form canonically equivalent locally posetal 2-categories, and (3) that the category of lifting algebras is cocomplete, with connected colimits created by the forgetful functor to dcpos. Finally we deduce the symmetric monoidal closure of the Eilenberg-Moore resolution of the lifting 2-monad by means of smash products; these are shown to classify both bilinear maps and strict maps, which we prove to coincide in the constructive setting. We provide several concrete computations of the smash product as dcpo coequalisers and lifting algebra coequalisers, and compare these with the more abstract results of Seal. Although all these results are well-known classically, the existing proofs do not apply in a constructive setting; indeed, the classical analysis of the Eilenberg-Moore category of the lifting monad relies on the fact that all lifting algebras are free, a condition that is not known to hold constructively.

We consider covariance parameter estimation for Gaussian processes with functional inputs. From an increasing-domain asymptotics perspective, we prove the asymptotic consistency and normality of the maximum likelihood estimator. We extend these theoretical guarantees to encompass scenarios accounting for approximation errors in the inputs, which allows robustness of practical implementations relying on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality hold when the approximation error becomes negligible, a condition that is often achieved as the number of samples or basis functions becomes large. These later asymptotic properties are illustrated through analytical examples, including one that covers the case of non-randomly perturbed grids, as well as several numerical illustrations.

北京阿比特科技有限公司