亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Benchmarking initiatives support the meaningful comparison of competing solutions to prominent problems in speech and language processing. Successive benchmarking evaluations typically reflect a progressive evolution from ideal lab conditions towards to those encountered in the wild. ASVspoof, the spoofing and deepfake detection initiative and challenge series, has followed the same trend. This article provides a summary of the ASVspoof 2021 challenge and the results of 54 participating teams that submitted to the evaluation phase. For the logical access (LA) task, results indicate that countermeasures are robust to newly introduced encoding and transmission effects. Results for the physical access (PA) task indicate the potential to detect replay attacks in real, as opposed to simulated physical spaces, but a lack of robustness to variations between simulated and real acoustic environments. The Deepfake (DF) task, new to the 2021 edition, targets solutions to the detection of manipulated, compressed speech data posted online. While detection solutions offer some resilience to compression effects, they lack generalization across different source datasets. In addition to a summary of the top-performing systems for each task, new analyses of influential data factors and results for hidden data subsets, the article includes a review of post-challenge results, an outline of the principal challenge limitations and a road-map for the future of ASVspoof.

相關內容

We consider the problem of interactive decision making, encompassing structured bandits and reinforcement learning with general function approximation. Recently, Foster et al. (2021) introduced the Decision-Estimation Coefficient, a measure of statistical complexity that lower bounds the optimal regret for interactive decision making, as well as a meta-algorithm, Estimation-to-Decisions, which achieves upper bounds in terms of the same quantity. Estimation-to-Decisions is a reduction, which lifts algorithms for (supervised) online estimation into algorithms for decision making. In this paper, we show that by combining Estimation-to-Decisions with a specialized form of optimistic estimation introduced by Zhang (2022), it is possible to obtain guarantees that improve upon those of Foster et al. (2021) by accommodating more lenient notions of estimation error. We use this approach to derive regret bounds for model-free reinforcement learning with value function approximation, and give structural results showing when it can and cannot help more generally.

Quantum computing promises potential for science and industry by solving certain computationally complex problems faster than classical computers. Quantum computing systems evolved from monolithic systems towards modular architectures comprising multiple quantum processing units (QPUs) coupled to classical computing nodes (HPC). With the increasing scale, middleware systems that facilitate the efficient coupling of quantum-classical computing are becoming critical. Through an in-depth analysis of quantum applications, integration patterns and systems, we identified a gap in understanding Quantum-HPC middleware systems. We present a conceptual middleware to facilitate reasoning about quantum-classical integration and serve as the basis for a future middleware system. An essential contribution of this paper lies in leveraging well-established high-performance computing abstractions for managing workloads, tasks, and resources to integrate quantum computing into HPC systems seamlessly.

The stability, robustness, accuracy, and efficiency of space-time finite element methods crucially depend on the choice of approximation spaces for test and trial functions. This is especially true for high-order, mixed finite element methods which often must satisfy an inf-sup condition in order to ensure stability. With this in mind, the primary objective of this paper and a companion paper is to provide a wide range of explicitly stated, conforming, finite element spaces in four-dimensions. In this paper, we construct explicit high-order conforming finite elements on 4-cubes (tesseracts); our construction uses tools from the recently developed `Finite Element Exterior Calculus'. With a focus on practical implementation, we provide details including Piola-type transformations, and explicit expressions for the volumetric, facet, face, edge, and vertex degrees of freedom. In addition, we establish important theoretical properties, such as the exactness of the finite element sequences, and the unisolvence of the degrees of freedom.

Causal inference is a crucial goal of science, enabling researchers to arrive at meaningful conclusions regarding the predictions of hypothetical interventions using observational data. Path models, Structural Equation Models (SEMs), and, more generally, Directed Acyclic Graphs (DAGs), provide a means to unambiguously specify assumptions regarding the causal structure underlying a phenomenon. Unlike DAGs, which make very few assumptions about the functional and parametric form, SEM assumes linearity. This can result in functional misspecification which prevents researchers from undertaking reliable effect size estimation. In contrast, we propose Super Learner Equation Modeling, a path modeling technique integrating machine learning Super Learner ensembles. We empirically demonstrate its ability to provide consistent and unbiased estimates of causal effects, its competitive performance for linear models when compared with SEM, and highlight its superiority over SEM when dealing with non-linear relationships. We provide open-source code, and a tutorial notebook with example usage, accentuating the easy-to-use nature of the method.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司