This paper introduces the family of lattice-like packings, which generalizes lattices, consisting of packings possessing periodicity and geometric uniformity. The subfamily of formally unimodular (lattice-like) packings is further investigated. It can be seen as a generalization of the unimodular and isodual lattices, and the Construction A formally unimodular packings obtained from formally self-dual codes are presented. Recently, lattice coding for the Gaussian wiretap channel has been considered. A measure called secrecy function was proposed to characterize the eavesdropper's probability of correctly decoding. The aim is to determine the global maximum value of the secrecy function, called (strong) secrecy gain. We further apply lattice-like packings to coset coding for the Gaussian wiretap channel and show that the family of formally unimodular packings shares the same secrecy function behavior as unimodular and isodual lattices. We propose a universal approach to determine the secrecy gain of a Construction A formally unimodular packing obtained from a formally self-dual code. From the weight distribution of a code, we provide a necessary condition for a formally self-dual code such that its Construction A formally unimodular packing is secrecy-optimal. Finally, we demonstrate that formally unimodular packings/lattices can achieve higher secrecy gain than the best-known unimodular lattices.
Contact-rich manipulation tasks often exhibit a large sim-to-real gap. For instance, industrial assembly tasks frequently involve tight insertions where the clearance is less than \(0.1\) mm and can even be negative when dealing with a deformable receptacle. This narrow clearance leads to complex contact dynamics that are difficult to model accurately in simulation, making it challenging to transfer simulation-learned policies to real-world robots. In this paper, we propose a novel framework for robustly learning manipulation skills for real-world tasks using only the simulated data. Our framework consists of two main components: the ``Force Planner'' and the ``Gain Tuner''. The Force Planner is responsible for planning both the robot motion and desired contact forces, while the Gain Tuner dynamically adjusts the compliance control gains to accurately track the desired contact forces during task execution. The key insight of this work is that by adaptively adjusting the robot's compliance control gains during task execution, we can modulate contact forces in the new environment, thereby generating trajectories similar to those trained in simulation and narrows the sim-to-real gap. Experimental results show that our method, trained in simulation on a generic square peg-and-hole task, can generalize to a variety of real-world insertion tasks involving narrow or even negative clearances, all without requiring any fine-tuning.
This paper studies optimal estimation of large-dimensional nonlinear factor models. The key challenge is that the observed variables are possibly nonlinear functions of some latent variables where the functional forms are left unspecified. A local principal component analysis method is proposed to estimate the factor structure and recover information on latent variables and latent functions, which combines $K$-nearest neighbors matching and principal component analysis. Large-sample properties are established, including a sharp bound on the matching discrepancy of nearest neighbors, sup-norm error bounds for estimated local factors and factor loadings, and the uniform convergence rate of the factor structure estimator. Under mild conditions our estimator of the latent factor structure can achieve the optimal rate of uniform convergence for nonparametric regression. The method is illustrated with a Monte Carlo experiment and an empirical application studying the effect of tax cuts on economic growth.
Path reasoning methods over knowledge graphs have gained popularity for their potential to improve transparency in recommender systems. However, the resulting models still rely on pre-trained knowledge graph embeddings, fail to fully exploit the interdependence between entities and relations in the KG for recommendation, and may generate inaccurate explanations. In this paper, we introduce PEARLM, a novel approach that efficiently captures user behaviour and product-side knowledge through language modelling. With our approach, knowledge graph embeddings are directly learned from paths over the KG by the language model, which also unifies entities and relations in the same optimisation space. Constraints on the sequence decoding additionally guarantee path faithfulness with respect to the KG. Experiments on two datasets show the effectiveness of our approach compared to state-of-the-art baselines. Source code and datasets: AVAILABLE AFTER GETTING ACCEPTED.
Cooperative perception, which has a broader perception field than single-vehicle perception, has played an increasingly important role in autonomous driving to conduct 3D object detection. Through vehicle-to-vehicle (V2V) communication technology, various connected automated vehicles (CAVs) can share their sensory information (LiDAR point clouds) for cooperative perception. We employ an importance map to extract significant semantic information and propose a novel cooperative perception semantic communication scheme with intermediate fusion. Meanwhile, our proposed architecture can be extended to the challenging time-varying multipath fading channel. To alleviate the distortion caused by the time-varying multipath fading, we adopt explicit orthogonal frequency-division multiplexing (OFDM) blocks combined with channel estimation and channel equalization. Simulation results demonstrate that our proposed model outperforms the traditional separate source-channel coding over various channel models. Moreover, a robustness study indicates that only part of semantic information is key to cooperative perception. Although our proposed model has only been trained over one specific channel, it has the ability to learn robust coded representations of semantic information that remain resilient to various channel models, demonstrating its generality and robustness.
This paper presents a Bayesian framework for inferring the posterior of the extended state of a target, incorporating its underlying goal or intent, such as any intermediate waypoints and/or final destination. The methodology is thus for joint tracking and intent recognition. Several novel latent intent models are proposed here within a virtual leader formulation. They capture the influence of the target's hidden goal on its instantaneous behaviour. In this context, various motion models, including for highly maneuvering objects, are also considered. The a priori unknown target intent (e.g. destination) can dynamically change over time and take any value within the state space (e.g. a location or spatial region). A sequential Monte Carlo (particle filtering) approach is introduced for the simultaneous estimation of the target's (kinematic) state and its intent. Rao-Blackwellisation is employed to enhance the statistical performance of the inference routine. Simulated data and real radar measurements are used to demonstrate the efficacy of the proposed techniques.
This paper investigates a large unitarily invariant system (LUIS) involving a unitarily invariant sensing matrix, an arbitrarily fixed signal distribution, and forward error control (FEC) coding. A universal Gram-Schmidt orthogonalization is considered for constructing orthogonal approximate message passing (OAMP), enabling its applicability to a wide range of prototypes without the constraint of differentiability. We develop two single-input-single-output variational transfer functions for OAMP with Lipschitz continuous local estimators, facilitating an analysis of achievable rates. Furthermore, when the state evolution of OAMP has a unique fixed point, we reveal that OAMP can achieve the constrained capacity predicted by the replica method of LUIS based on matched FEC coding, regardless of the signal distribution. The replica method is rigorously validated for LUIS with Gaussian signaling and certain sub-classes of LUIS with arbitrary signal distributions. Several area properties are established based on the variational transfer functions of OAMP. Meanwhile, we present a replica constrained capacity-achieving coding principle for LUIS. This principle serves as the basis for optimizing irregular low-density parity-check (LDPC) codes specifically tailored for binary signaling in our simulation results. The performance of OAMP with these optimized codes exhibits a remarkable improvement over the unoptimized codes and even surpasses the well-known Turbo-LMMSE algorithm. For quadrature phase-shift keying (QPSK) modulation, we observe bit error rates (BER) performance near the replica constrained capacity across diverse channel conditions.
The NLP community typically relies on performance of a model on a held-out test set to assess generalization. Performance drops observed in datasets outside of official test sets are generally attributed to "out-of-distribution'' effects. Here, we explore the foundations of generalizability and study the various factors that affect it, articulating generalizability lessons from clinical studies. In clinical research generalizability depends on (a) internal validity of experiments to ensure controlled measurement of cause and effect, and (b) external validity or transportability of the results to the wider population. We present the need to ensure internal validity when building machine learning models in natural language processing, especially where results may be impacted by spurious correlations in the data. We demonstrate how spurious factors, such as the distance between entities in relation extraction tasks, can affect model internal validity and in turn adversely impact generalization. We also offer guidance on how to analyze generalization failures.
In this paper, we revisit the bioluminescence tomography (BLT) problem, where one seeks to reconstruct bioluminescence signals (an internal light source) from external measurements of the Cauchy data. As one kind of optical imaging, the BLT has many merits such as high signal-to-noise ratio, non-destructivity and cost-effectiveness etc., and has potential applications such as cancer diagnosis, drug discovery and development as well as gene therapies and so on. In the literature, BLT is extensively studied based on diffusion approximation (DA) equation, where the distribution of peak sources is to be reconstructed and no solution uniqueness is guaranteed without adequate a priori information. Motivated by the solution uniqueness issue, several theoretical results are explored. The major contributions in this work that are new to the literature are two-fold: first, we show the theoretical uniqueness of the BLT problem where the light sources are in the shape of $C^2$ domains or polyhedral- or corona-shaped; second, we support our results with plenty of problem-orientated numerical experiments.
This paper proposes the use of causal modeling to detect and mitigate algorithmic bias. We provide a brief description of causal modeling and a general overview of our approach. We then use the Adult dataset, which is available for download from the UC Irvine Machine Learning Repository, to develop (1) a prediction model, which is treated as a black box, and (2) a causal model for bias mitigation. In this paper, we focus on gender bias and the problem of binary classification. We show that gender bias in the prediction model is statistically significant at the 0.05 level. We demonstrate the effectiveness of the causal model in mitigating gender bias by cross-validation. Furthermore, we show that the overall classification accuracy is improved slightly. Our novel approach is intuitive, easy-to-use, and can be implemented using existing statistical software tools such as "lavaan" in R. Hence, it enhances explainability and promotes trust.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.