亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing Curry-Howard interpretations of call-by-value evaluation for the $\lambda$-calculus are either based on ad-hoc modifications of intuitionistic proof systems or involve additional logical concepts such as classical logic or linear logic, despite the fact that call-by-value was introduced in an intuitionistic setting without linear features. This paper shows that the most basic sequent calculus for minimal intuitionistic logic -- dubbed here vanilla -- can naturally be seen as a logical interpretation of call-by-value evaluation. This is obtained by establishing mutual simulations with a well-known formalism for call-by-value evaluation.

相關內容

The centralized training for decentralized execution paradigm emerged as the state-of-the-art approach to $\epsilon$-optimally solving decentralized partially observable Markov decision processes. However, scalability remains a significant issue. This paper presents a novel and more scalable alternative, namely the sequential-move centralized training for decentralized execution. This paradigm further pushes the applicability of the Bellman's principle of optimality, raising three new properties. First, it allows a central planner to reason upon sufficient sequential-move statistics instead of prior simultaneous-move ones. Next, it proves that $\epsilon$-optimal value functions are piecewise linear and convex in such sufficient sequential-move statistics. Finally, it drops the complexity of the backup operators from double exponential to polynomial at the expense of longer planning horizons. Besides, it makes it easy to use single-agent methods, e.g., SARSA algorithm enhanced with these findings, while still preserving convergence guarantees. Experiments on two- as well as many-agent domains from the literature against $\epsilon$-optimal simultaneous-move solvers confirm the superiority of our novel approach. This paradigm opens the door for efficient planning and reinforcement learning methods for multi-agent systems.

We present {\em generative clustering} (GC) for clustering a set of documents, $\mathrm{X}$, by using texts $\mathrm{Y}$ generated by large language models (LLMs) instead of by clustering the original documents $\mathrm{X}$. Because LLMs provide probability distributions, the similarity between two documents can be rigorously defined in an information-theoretic manner by the KL divergence. We also propose a natural, novel clustering algorithm by using importance sampling. We show that GC achieves the state-of-the-art performance, outperforming any previous clustering method often by a large margin. Furthermore, we show an application to generative document retrieval in which documents are indexed via hierarchical clustering and our method improves the retrieval accuracy.

Domain adaptation (DA) tackles the issue of distribution shift by learning a model from a source domain that generalizes to a target domain. However, most existing DA methods are designed for scenarios where the source and target domain data lie within the same feature space, which limits their applicability in real-world situations. Recently, heterogeneous DA (HeDA) methods have been introduced to address the challenges posed by heterogeneous feature space between source and target domains. Despite their successes, current HeDA techniques fall short when there is a mismatch in both feature and label spaces. To address this, this paper explores a new DA scenario called open-set HeDA (OSHeDA). In OSHeDA, the model must not only handle heterogeneity in feature space but also identify samples belonging to novel classes. To tackle this challenge, we first develop a novel theoretical framework that constructs learning bounds for prediction error on target domain. Guided by this framework, we propose a new DA method called Representation Learning for OSHeDA (RL-OSHeDA). This method is designed to simultaneously transfer knowledge between heterogeneous data sources and identify novel classes. Experiments across text, image, and clinical data demonstrate the effectiveness of our algorithm. Model implementation is available at \url{//github.com/pth1993/OSHeDA}.

Topic modeling is widely used for uncovering thematic structures within text corpora, yet traditional models often struggle with specificity and coherence in domain-focused applications. Guided approaches, such as SeededLDA and CorEx, incorporate user-provided seed words to improve relevance but remain labor-intensive and static. Large language models (LLMs) offer potential for dynamic topic refinement and discovery, yet their application often incurs high API costs. To address these challenges, we propose the LLM-assisted Iterative Topic Augmentation framework (LITA), an LLM-assisted approach that integrates user-provided seeds with embedding-based clustering and iterative refinement. LITA identifies a small number of ambiguous documents and employs an LLM to reassign them to existing or new topics, minimizing API costs while enhancing topic quality. Experiments on two datasets across topic quality and clustering performance metrics demonstrate that LITA outperforms five baseline models, including LDA, SeededLDA, CorEx, BERTopic, and PromptTopic. Our work offers an efficient and adaptable framework for advancing topic modeling and text clustering.

Diffusion based text-to-image models are trained on large datasets scraped from the Internet, potentially containing unacceptable concepts (e.g., copyright-infringing or unsafe). We need concept removal techniques (CRTs) which are i) effective in preventing the generation of images with unacceptable concepts, ii) utility-preserving on acceptable concepts, and, iii) robust against evasion with adversarial prompts. No prior CRT satisfies all these requirements simultaneously. We introduce Espresso, the first robust concept filter based on Contrastive Language-Image Pre-Training (CLIP). We identify unacceptable concepts by using the distance between the embedding of a generated image to the text embeddings of both unacceptable and acceptable concepts. This lets us fine-tune for robustness by separating the text embeddings of unacceptable and acceptable concepts while preserving utility. We present a pipeline to evaluate various CRTs to show that Espresso is more effective and robust than prior CRTs, while retaining utility.

This work considers the problem of output-sensitive listing of occurrences of $2k$-cycles for fixed constant $k\geq 2$ in an undirected host graph with $m$ edges and $t$ $2k$-cycles. Recent work of Jin and Xu (and independently Abboud, Khoury, Leibowitz, and Safier) [STOC 2023] gives an $O(m^{4/3}+t)$ time algorithm for listing $4$-cycles, and recent work by Jin, Vassilevska Williams and Zhou [SOSA 2024] gives an $\widetilde{O}(n^2+t)$ time algorithm for listing $6$-cycles in $n$ node graphs. We focus on resolving the next natural question: obtaining listing algorithms for $6$-cycles in the sparse setting, i.e., in terms of $m$ rather than $n$. Previously, the best known result here is the better of Jin, Vassilevska Williams and Zhou's $\widetilde{O}(n^2+t)$ algorithm and Alon, Yuster and Zwick's $O(m^{5/3}+t)$ algorithm. We give an algorithm for listing $6$-cycles with running time $\widetilde{O}(m^{1.6}+t)$. Our algorithm is a natural extension of Dahlgaard, Knudsen and St\"ockel's [STOC 2017] algorithm for detecting a $2k$-cycle. Our main technical contribution is the analysis of the algorithm which involves a type of ``supersaturation'' lemma relating the number of $2k$-cycles in a bipartite graph to the sizes of the parts in the bipartition and the number of edges. We also give a simplified analysis of Dahlgaard, Knudsen and St\"ockel's $2k$-cycle detection algorithm (with a small polylogarithmic increase in the running time), which is helpful in analyzing our listing algorithm.

Vector quantization(VQ) is a hardware-friendly DNN compression method that can reduce the storage cost and weight-loading datawidth of hardware accelerators. However, conventional VQ techniques lead to significant accuracy loss because the important weights are not well preserved. To tackle this problem, a novel approach called MVQ is proposed, which aims at better approximating important weights with a limited number of codewords. At the algorithm level, our approach removes the less important weights through N:M pruning and then minimizes the vector clustering error between the remaining weights and codewords by the masked k-means algorithm. Only distances between the unpruned weights and the codewords are computed, which are then used to update the codewords. At the architecture level, our accelerator implements vector quantization on an EWS (Enhanced weight stationary) CNN accelerator and proposes a sparse systolic array design to maximize the benefits brought by masked vector quantization.\\ Our algorithm is validated on various models for image classification, object detection, and segmentation tasks. Experimental results demonstrate that MVQ not only outperforms conventional vector quantization methods at comparable compression ratios but also reduces FLOPs. Under ASIC evaluation, our MVQ accelerator boosts energy efficiency by 2.3$\times$ and reduces the size of the systolic array by 55\% when compared with the base EWS accelerator. Compared to the previous sparse accelerators, MVQ achieves 1.73$\times$ higher energy efficiency.

Low bit-precisions and their bit-slice sparsity have recently been studied to accelerate general matrix-multiplications (GEMM) during large-scale deep neural network (DNN) inferences. While the conventional symmetric quantization facilitates low-resolution processing with bit-slice sparsity for both weight and activation, its accuracy loss caused by the activation's asymmetric distributions cannot be acceptable, especially for large-scale DNNs. In efforts to mitigate this accuracy loss, recent studies have actively utilized asymmetric quantization for activations without requiring additional operations. However, the cutting-edge asymmetric quantization produces numerous nonzero slices that cannot be compressed and skipped by recent bit-slice GEMM accelerators, naturally consuming more processing energy to handle the quantized DNN models. To simultaneously achieve high accuracy and hardware efficiency for large-scale DNN inferences, this paper proposes an Asymmetrically-Quantized bit-Slice GEMM (AQS-GEMM) for the first time. In contrast to the previous bit-slice computing, which only skips operations of zero slices, the AQS-GEMM compresses frequent nonzero slices, generated by asymmetric quantization, and skips their operations. To increase the slice-level sparsity of activations, we also introduce two algorithm-hardware co-optimization methods: a zero-point manipulation and a distribution-based bit-slicing. To support the proposed AQS-GEMM and optimizations at the hardware-level, we newly introduce a DNN accelerator, Panacea, which efficiently handles sparse/dense workloads of the tiled AQS-GEMM to increase data reuse and utilization. Panacea supports a specialized dataflow and run-length encoding to maximize data reuse and minimize external memory accesses, significantly improving its hardware efficiency. Our benchmark evaluations show Panacea outperforms existing DNN accelerators.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Joint image-text embedding is the bedrock for most Vision-and-Language (V+L) tasks, where multimodality inputs are jointly processed for visual and textual understanding. In this paper, we introduce UNITER, a UNiversal Image-TExt Representation, learned through large-scale pre-training over four image-text datasets (COCO, Visual Genome, Conceptual Captions, and SBU Captions), which can power heterogeneous downstream V+L tasks with joint multimodal embeddings. We design three pre-training tasks: Masked Language Modeling (MLM), Image-Text Matching (ITM), and Masked Region Modeling (MRM, with three variants). Different from concurrent work on multimodal pre-training that apply joint random masking to both modalities, we use conditioned masking on pre-training tasks (i.e., masked language/region modeling is conditioned on full observation of image/text). Comprehensive analysis shows that conditioned masking yields better performance than unconditioned masking. We also conduct a thorough ablation study to find an optimal setting for the combination of pre-training tasks. Extensive experiments show that UNITER achieves new state of the art across six V+L tasks (over nine datasets), including Visual Question Answering, Image-Text Retrieval, Referring Expression Comprehension, Visual Commonsense Reasoning, Visual Entailment, and NLVR2.

北京阿比特科技有限公司