Modern DDoS defense systems rely on probabilistic monitoring algorithms to identify flows that exceed a volume threshold and should thus be penalized. Commonly, classic sketch algorithms are considered sufficiently accurate for usage in DDoS defense. However, as we show in this paper, these algorithms achieve poor detection accuracy under burst-flood attacks, i.e., volumetric DDoS attacks composed of a swarm of medium-rate sub-second traffic bursts. Under this challenging attack pattern, traditional sketch algorithms can only detect a high share of the attack bursts by incurring a large number of false positives. In this paper, we present ALBUS, a probabilistic monitoring algorithm that overcomes the inherent limitations of previous schemes: ALBUS is highly effective at detecting large bursts while reporting no legitimate flows, and therefore improves on prior work regarding both recall and precision. Besides improving accuracy, ALBUS scales to high traffic rates, which we demonstrate with an FPGA implementation, and is suitable for programmable switches, which we showcase with a P4 implementation.
Most of the existing point-to-mesh distance query solvers, such as Proximity Query Package (PQP), Embree and Fast Closest Point Query (FCPW), are based on bounding volume hierarchy (BVH). The hierarchical organizational structure enables one to eliminate the vast majority of triangles that do not help find the closest point. In this paper, we develop a totally different algorithmic paradigm, named P2M, to speed up point-to-mesh distance queries. Our original intention is to precompute a KD tree (KDT) of mesh vertices to approximately encode the geometry of a mesh surface containing vertices, edges and faces. However, it is very likely that the closest primitive to the query point is an edge e (resp., a face f), but the KDT reports a mesh vertex \u{psion} instead. We call \u{psion} an interceptor of e (resp., f). The main contribution of this paper is to invent a simple yet effective interception inspection rule and an efficient flooding interception inspection algorithm for quickly finding out all the interception pairs. Once the KDT and the interception table are precomputed, the query stage proceeds by first searching the KDT and then looking up the interception table to retrieve the closest geometric primitive. Statistics show that our query algorithm runs many times faster than the state-of-the-art solvers.
The popularity of automatic speech recognition (ASR) systems nowadays leads to an increasing need for improving their accessibility. Handling stuttering speech is an important feature for accessible ASR systems. To improve the accessibility of ASR systems for stutterers, we need to expose and analyze the failures of ASR systems on stuttering speech. The speech datasets recorded from stutterers are not diverse enough to expose most of the failures. Furthermore, these datasets lack ground truth information about the non-stuttered text, rendering them unsuitable as comprehensive test suites. Therefore, a methodology for generating stuttering speech as test inputs to test and analyze the performance of ASR systems is needed. However, generating valid test inputs in this scenario is challenging. The reason is that although the generated test inputs should mimic how stutterers speak, they should also be diverse enough to trigger more failures. To address the challenge, we propose ASTER, a technique for automatically testing the accessibility of ASR systems. ASTER can generate valid test cases by injecting five different types of stuttering. The generated test cases can both simulate realistic stuttering speech and expose failures in ASR systems. Moreover, ASTER can further enhance the quality of the test cases with a multi-objective optimization-based seed updating algorithm. We implemented ASTER as a framework and evaluated it on four open-source ASR models and three commercial ASR systems. We conduct a comprehensive evaluation of ASTER and find that it significantly increases the word error rate, match error rate, and word information loss in the evaluated ASR systems. Additionally, our user study demonstrates that the generated stuttering audio is indistinguishable from real-world stuttering audio clips.
Until recently, the Video Instance Segmentation (VIS) community operated under the common belief that offline methods are generally superior to a frame by frame online processing. However, the recent success of online methods questions this belief, in particular, for challenging and long video sequences. We understand this work as a rebuttal of those recent observations and an appeal to the community to focus on dedicated near-online VIS approaches. To support our argument, we present a detailed analysis on different processing paradigms and the new end-to-end trainable NOVIS (Near-Online Video Instance Segmentation) method. Our transformer-based model directly predicts spatio-temporal mask volumes for clips of frames and performs instance tracking between clips via overlap embeddings. NOVIS represents the first near-online VIS approach which avoids any handcrafted tracking heuristics. We outperform all existing VIS methods by large margins and provide new state-of-the-art results on both YouTube-VIS (2019/2021) and the OVIS benchmarks.
One of the main tasks of Natural Language Processing (NLP), is Named Entity Recognition (NER). It is used in many applications and also can be used as an intermediate step for other tasks. We present ANER, a web-based named entity recognizer for the Arabic, and Arabizi languages. The model is built upon BERT, which is a transformer-based encoder. It can recognize 50 different entity classes, covering various fields. We trained our model on the WikiFANE\_Gold dataset which consists of Wikipedia articles. We achieved an F1 score of 88.7\%, which beats CAMeL Tools' F1 score of 83\% on the ANERcorp dataset, which has only 4 classes. We also got an F1 score of 77.7\% on the NewsFANE\_Gold dataset which contains out-of-domain data from News articles. The system is deployed on a user-friendly web interface that accepts users' inputs in Arabic, or Arabizi. It allows users to explore the entities in the text by highlighting them. It can also direct users to get information about entities through Wikipedia directly. We added the ability to do NER using our model, or CAMeL Tools' model through our website. ANER is publicly accessible at \url{//www.aner.online}. We also deployed our model on HuggingFace at //huggingface.co/boda/ANER, to allow developers to test and use it.
Document-level relation extraction aims to identify relationships between entities within a document. Current methods rely on text-based encoders and employ various hand-coded pooling heuristics to aggregate information from entity mentions and associated contexts. In this paper, we replace these rigid pooling functions with explicit graph relations by leveraging the intrinsic graph processing capabilities of the Transformer model. We propose a joint text-graph Transformer model, and a graph-assisted declarative pooling (GADePo) specification of the input which provides explicit and high-level instructions for information aggregation. This allows the pooling process to be guided by domain-specific knowledge or desired outcomes but still learned by the Transformer, leading to more flexible and customizable pooling strategies. We extensively evaluate our method across diverse datasets and models, and show that our approach yields promising results that are comparable to those achieved by the hand-coded pooling functions.
We propose DISC-MedLLM, a comprehensive solution that leverages Large Language Models (LLMs) to provide accurate and truthful medical response in end-to-end conversational healthcare services. To construct high-quality Supervised Fine-Tuning (SFT) datasets, we employ three strategies: utilizing medical knowledge-graphs, reconstructing real-world dialogues, and incorporating human-guided preference rephrasing. These datasets are instrumental in training DISC-MedLLM, surpassing existing medical LLMs in both single-turn and multi-turn consultation scenarios. Extensive experimental results demonstrate the effectiveness of the proposed model in bridging the gap between general language models and real-world medical consultation. Additionally, we release the constructed dataset and model weights to further contribute to research and development. Further details and resources can be found at //github.com/FudanDISC/DISC-MedLLM
Mechanistic interpretability seeks to understand the neural mechanisms that enable specific behaviors in Large Language Models (LLMs) by leveraging causality-based methods. While these approaches have identified neural circuits that copy spans of text, capture factual knowledge, and more, they remain unusable for multimodal models since adapting these tools to the vision-language domain requires considerable architectural changes. In this work, we adapt a unimodal causal tracing tool to BLIP to enable the study of the neural mechanisms underlying image-conditioned text generation. We demonstrate our approach on a visual question answering dataset, highlighting the causal relevance of later layer representations for all tokens. Furthermore, we release our BLIP causal tracing tool as open source to enable further experimentation in vision-language mechanistic interpretability by the community. Our code is available at //github.com/vedantpalit/Towards-Vision-Language-Mechanistic-Interpretability.
Model Checking is widely applied in verifying the correctness of complex and concurrent systems against a specification. Pure symbolic approaches while popular, suffer from the state space explosion problem due to cross product operations required that make them prohibitively expensive for large-scale systems and/or specifications. In this paper, we propose to use graph representation learning (GRL) for solving linear temporal logic (LTL) model checking, where the system and the specification are expressed by a B{\"u}chi automaton and an LTL formula, respectively. A novel GRL-based framework \model, is designed to learn the representation of the graph-structured system and specification, which reduces the model checking problem to binary classification. Empirical experiments on two model checking scenarios show that \model achieves promising accuracy, with up to $11\times$ overall speedup against canonical SOTA model checkers and $31\times$ for satisfiability checking alone.
Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.