Matching on covariates is a well-established framework for estimating causal effects in observational studies. The principal challenge in these settings stems from the often high-dimensional structure of the problem. Many methods have been introduced to deal with this challenge, with different advantages and drawbacks in computational and statistical performance and interpretability. Moreover, the methodological focus has been on matching two samples in binary treatment scenarios, but a dedicated method that can optimally balance samples across multiple treatments has so far been unavailable. This article introduces a natural optimal matching method based on entropy-regularized multimarginal optimal transport that possesses many useful properties to address these challenges. It provides interpretable weights of matched individuals that converge at the parametric rate to the optimal weights in the population, can be efficiently implemented via the classical iterative proportional fitting procedure, and can even match several treatment arms simultaneously. It also possesses demonstrably excellent finite sample properties.
In this study, a longitudinal regression model for covariance matrix outcomes is introduced. The proposal considers a multilevel generalized linear model for regressing covariance matrices on (time-varying) predictors. This model simultaneously identifies covariate associated components from covariance matrices, estimates regression coefficients, and estimates the within-subject variation in the covariance matrices. Optimal estimators are proposed for both low-dimensional and high-dimensional cases by maximizing the (approximated) hierarchical likelihood function and are proved to be asymptotically consistent, where the proposed estimator is the most efficient under the low-dimensional case and achieves the uniformly minimum quadratic loss among all linear combinations of the identity matrix and the sample covariance matrix under the high-dimensional case. Through extensive simulation studies, the proposed approach achieves good performance in identifying the covariate related components and estimating the model parameters. Applying to a longitudinal resting-state fMRI dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the proposed approach identifies brain networks that demonstrate the difference between males and females at different disease stages. The findings are in line with existing knowledge of AD and the method improves the statistical power over the analysis of cross-sectional data.
The fundamental challenge of drawing causal inference is that counterfactual outcomes are not fully observed for any unit. Furthermore, in observational studies, treatment assignment is likely to be confounded. Many statistical methods have emerged for causal inference under unconfoundedness conditions given pre-treatment covariates, including propensity score-based methods, prognostic score-based methods, and doubly robust methods. Unfortunately for applied researchers, there is no `one-size-fits-all' causal method that can perform optimally universally. In practice, causal methods are primarily evaluated quantitatively on handcrafted simulated data. Such data-generative procedures can be of limited value because they are typically stylized models of reality. They are simplified for tractability and lack the complexities of real-world data. For applied researchers, it is critical to understand how well a method performs for the data at hand. Our work introduces a deep generative model-based framework, Credence, to validate causal inference methods. The framework's novelty stems from its ability to generate synthetic data anchored at the empirical distribution for the observed sample, and therefore virtually indistinguishable from the latter. The approach allows the user to specify ground truth for the form and magnitude of causal effects and confounding bias as functions of covariates. Thus simulated data sets are used to evaluate the potential performance of various causal estimation methods when applied to data similar to the observed sample. We demonstrate Credence's ability to accurately assess the relative performance of causal estimation techniques in an extensive simulation study and two real-world data applications from Lalonde and Project STAR studies.
In this work, a multirate in time approach resolving the different time scales of a convection-dominated transport and coupled fluid flow is developed and studied in view of goal-oriented error control by means of the Dual Weighted Residual (DWR) method. Key ingredients are an arbitrary degree discontinuous Galerkin time discretization of the underlying subproblems, an a posteriori error representation for the transport problem coupled with flow and its implementation using space-time tensor-product spaces. The error representation allows the separation of the temporal and spatial discretization error which serve as local error indicators for adaptive mesh refinement. The performance of the approach and its software implementation are studied by numerical convergence examples as well as an example of physical interest for convection-dominated transport.
We propose a new technique for constructing low-rank approximations of matrices that arise in kernel methods for machine learning. Our approach pairs a novel automatically constructed analytic expansion of the underlying kernel function with a data-dependent compression step to further optimize the approximation. This procedure works in linear time and is applicable to any isotropic kernel. Moreover, our method accepts the desired error tolerance as input, in contrast to prevalent methods which accept the rank as input. Experimental results show our approach compares favorably to the commonly used Nystrom method with respect to both accuracy for a given rank and computational time for a given accuracy across a variety of kernels, dimensions, and datasets. Notably, in many of these problem settings our approach produces near-optimal low-rank approximations. We provide an efficient open-source implementation of our new technique to complement our theoretical developments and experimental results.
Local Interpretable Model-Agnostic Explanations (LIME) is a popular method to perform interpretability of any kind of Machine Learning (ML) model. It explains one ML prediction at a time, by learning a simple linear model around the prediction. The model is trained on randomly generated data points, sampled from the training dataset distribution and weighted according to the distance from the reference point - the one being explained by LIME. Feature selection is applied to keep only the most important variables. LIME is widespread across different domains, although its instability - a single prediction may obtain different explanations - is one of the major shortcomings. This is due to the randomness in the sampling step, as well as to the flexibility in tuning the weights and determines a lack of reliability in the retrieved explanations, making LIME adoption problematic. In Medicine especially, clinical professionals trust is mandatory to determine the acceptance of an explainable algorithm, considering the importance of the decisions at stake and the related legal issues. In this paper, we highlight a trade-off between explanation's stability and adherence, namely how much it resembles the ML model. Exploiting our innovative discovery, we propose a framework to maximise stability, while retaining a predefined level of adherence. OptiLIME provides freedom to choose the best adherence-stability trade-off level and more importantly, it clearly highlights the mathematical properties of the retrieved explanation. As a result, the practitioner is provided with tools to decide whether the explanation is reliable, according to the problem at hand. We extensively test OptiLIME on a toy dataset - to present visually the geometrical findings - and a medical dataset. In the latter, we show how the method comes up with meaningful explanations both from a medical and mathematical standpoint.
We consider the problem of estimating high-dimensional covariance matrices of $K$-populations or classes in the setting where the sample sizes are comparable to the data dimension. We propose estimating each class covariance matrix as a distinct linear combination of all class sample covariance matrices. This approach is shown to reduce the estimation error when the sample sizes are limited, and the true class covariance matrices share a somewhat similar structure. We develop an effective method for estimating the coefficients in the linear combination that minimize the mean squared error under the general assumption that the samples are drawn from (unspecified) elliptically symmetric distributions possessing finite fourth-order moments. To this end, we utilize the spatial sign covariance matrix, which we show (under rather general conditions) to be an asymptotically unbiased estimator of the normalized covariance matrix as the dimension grows to infinity. We also show how the proposed method can be used in choosing the regularization parameters for multiple target matrices in a single class covariance matrix estimation problem. We assess the proposed method via numerical simulation studies including an application in global minimum variance portfolio optimization using real stock data.
For real symmetric matrices that are accessible only through matrix vector products, we present Monte Carlo estimators for computing the diagonal elements. Our probabilistic bounds for normwise absolute and relative errors apply to Monte Carlo estimators based on random Rademacher, sparse Rademacher, normalized and unnormalized Gaussian vectors, and to vectors with bounded fourth moments. The novel use of matrix concentration inequalities in our proofs represents a systematic model for future analyses. Our bounds mostly do not depend on the matrix dimension, target different error measures than existing work, and imply that the accuracy of the estimators increases with the diagonal dominance of the matrix. An application to derivative-based global sensitivity metrics corroborates this, as do numerical experiments on synthetic test matrices. We recommend against the use in practice of sparse Rademacher vectors, which are the basis for many randomized sketching and sampling algorithms, because they tend to deliver barely a digit of accuracy even under large sampling amounts.
We present methods for causally interpretable meta-analyses that combine information from multiple randomized trials to estimate potential (counterfactual) outcome means and average treatment effects in a target population. We consider identifiability conditions, derive implications of the conditions for the law of the observed data, and obtain identification results for transporting causal inferences from a collection of independent randomized trials to a new target population in which experimental data may not be available. We propose an estimator for the potential (counterfactual) outcome mean in the target population under each treatment studied in the trials. The estimator uses covariate, treatment, and outcome data from the collection of trials, but only covariate data from the target population sample. We show that it is doubly robust, in the sense that it is consistent and asymptotically normal when at least one of the models it relies on is correctly specified. We study the finite sample properties of the estimator in simulation studies and demonstrate its implementation using data from a multi-center randomized trial.
This paper considers the design of optimal resource allocation policies in wireless communication systems which are generically modeled as a functional optimization problem with stochastic constraints. These optimization problems have the structure of a learning problem in which the statistical loss appears as a constraint, motivating the development of learning methodologies to attempt their solution. To handle stochastic constraints, training is undertaken in the dual domain. It is shown that this can be done with small loss of optimality when using near-universal learning parameterizations. In particular, since deep neural networks (DNN) are near-universal their use is advocated and explored. DNNs are trained here with a model-free primal-dual method that simultaneously learns a DNN parametrization of the resource allocation policy and optimizes the primal and dual variables. Numerical simulations demonstrate the strong performance of the proposed approach on a number of common wireless resource allocation problems.
The noise transition matrix plays a central role in the problem of learning from noisy labels. Among many other reasons, a significant number of existing solutions rely on access to it. Estimating the transition matrix without using ground truth labels is a critical and challenging task. When label noise transition depends on each instance, the problem of identifying the instance-dependent noise transition matrix becomes substantially more challenging. Despite recent works proposing solutions for learning from instance-dependent noisy labels, we lack a unified understanding of when such a problem remains identifiable, and therefore learnable. This paper seeks to provide answers to a sequence of related questions: What are the primary factors that contribute to the identifiability of a noise transition matrix? Can we explain the observed empirical successes? When a problem is not identifiable, what can we do to make it so? We will relate our theoretical findings to the literature and hope to provide guidelines for developing effective solutions for battling instance-dependent label noise.