亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A graph $G=(V,E)$ is said to be distance magic if there is a bijection $f$ from a vertex set of $G$ to the first $|V(G)|$ natural numbers such that for each vertex $v$, its weight given by $\sum_{u \in N(v)}f(u)$ is constant, where $N(v)$ is an open neighborhood of a vertex $v$. In this paper, we introduce the concept of $p$-distance magic labeling and establish the necessary and sufficient condition for a graph to be distance magic. Additionally, we introduce necessary and sufficient conditions for a connected regular graph to exhibit distance magic properties in terms of the eigenvalues of its adjacency and Laplacian matrices. Furthermore, we study the spectra of distance magic graphs, focusing on singular distance magic graphs. Also, we show that the number of distance magic labelings of a graph is, at most, the size of its automorphism group.

相關內容

For a locally finite set, $A \subseteq \mathbb{R}^d$, the $k$-th Brillouin zone of $a \in A$ is the region of points $x \in \mathbb{R}^d$ for which $\|x-a\|$ is the $k$-th smallest among the Euclidean distances between $x$ and the points in $A$. If $A$ is a lattice, the $k$-th Brillouin zones of the points in $A$ are translates of each other, which tile space. Depending on the value of $k$, they express medium- or long-range order in the set. We study fundamental geometric and combinatorial properties of Brillouin zones, focusing on the integer lattice and its perturbations. Our results include the stability of a Brillouin zone under perturbations, a linear upper bound on the number of chambers in a zone for lattices in $\mathbb{R}^2$, and the convergence of the maximum volume of a chamber to zero for the integer lattice.

The maximum coverage problem is to select $k$ sets from a collection of sets such that the cardinality of the union of the selected sets is maximized. We consider $(1-1/e-\epsilon)$-approximation algorithms for this NP-hard problem in three standard data stream models. 1. {\em Dynamic Model.} The stream consists of a sequence of sets being inserted and deleted. Our multi-pass algorithm uses $\epsilon^{-2} k \cdot \text{polylog}(n,m)$ space. The best previous result (Assadi and Khanna, SODA 2018) used $(n +\epsilon^{-4} k) \text{polylog}(n,m)$ space. While both algorithms use $O(\epsilon^{-1} \log n)$ passes, our analysis shows that when $\epsilon$ is a constant, it is possible to reduce the number of passes by a $1/\log \log n$ factor without incurring additional space. 2. {\em Random Order Model.} In this model, there are no deletions and the sets forming the instance are uniformly randomly permuted to form the input stream. We show that a single pass and $k \text{polylog}(n,m)$ space suffices for arbitrary small constant $\epsilon$. The best previous result, by Warneke et al.~(ESA 2023), used $k^2 \text{polylog}(n,m)$ space. 3. {\em Insert-Only Model.} Lastly, our results, along with numerous previous results, use a sub-sampling technique introduced by McGregor and Vu (ICDT 2017) to sparsify the input instance. We explain how this technique and others used in the paper can be implemented such that the amortized update time of our algorithm is polylogarithmic. This also implies an improvement of the state-of-the-art insert only algorithms in terms of the update time: $\text{polylog}(m,n)$ update time suffices whereas the best previous result by Jaud et al.~(SEA 2023) required update time that was linear in $k$.

Given a real inner product space $V$ and a group $G$ of linear isometries, we construct a family of $G$-invariant real-valued functions on $V$ that we call coorbit filter banks, which unify previous notions of max filter banks and finite coorbit filter banks. When $V=\mathbb R^d$ and $G$ is compact, we establish that a suitable coorbit filter bank is injective and locally lower Lipschitz in the quotient metric at orbits of maximal dimension. Furthermore, when the orbit space $\mathbb S^{d-1}/G$ is a Riemannian orbifold, we show that a suitable coorbit filter bank is bi-Lipschitz in the quotient metric.

We show that any bounded integral function $f : A \times B \mapsto \{0,1, \dots, \Delta\}$ with rank $r$ has deterministic communication complexity $\Delta^{O(\Delta)} \cdot \sqrt{r} \cdot \log r$, where the rank of $f$ is defined to be the rank of the $A \times B$ matrix whose entries are the function values. As a corollary, we show that any $n$-dimensional polytope that admits a slack matrix with entries from $\{0,1,\dots,\Delta\}$ has extension complexity at most $\exp(\Delta^{O(\Delta)} \cdot \sqrt{n} \cdot \log n)$.

We investigate a Bayesian $k$-armed bandit problem in the \emph{many-armed} regime, where $k \geq \sqrt{T}$ and $T$ represents the time horizon. Initially, and aligned with recent literature on many-armed bandit problems, we observe that subsampling plays a key role in designing optimal algorithms; the conventional UCB algorithm is sub-optimal, whereas a subsampled UCB (SS-UCB), which selects $\Theta(\sqrt{T})$ arms for execution under the UCB framework, achieves rate-optimality. However, despite SS-UCB's theoretical promise of optimal regret, it empirically underperforms compared to a greedy algorithm that consistently chooses the empirically best arm. This observation extends to contextual settings through simulations with real-world data. Our findings suggest a new form of \emph{free exploration} beneficial to greedy algorithms in the many-armed context, fundamentally linked to a tail event concerning the prior distribution of arm rewards. This finding diverges from the notion of free exploration, which relates to covariate variation, as recently discussed in contextual bandit literature. Expanding upon these insights, we establish that the subsampled greedy approach not only achieves rate-optimality for Bernoulli bandits within the many-armed regime but also attains sublinear regret across broader distributions. Collectively, our research indicates that in the many-armed regime, practitioners might find greater value in adopting greedy algorithms.

Given an intractable distribution $p$, the problem of variational inference (VI) is to compute the best approximation $q$ from some more tractable family $\mathcal{Q}$. Most commonly the approximation is found by minimizing a Kullback-Leibler (KL) divergence. However, there exist other valid choices of divergences, and when $\mathcal{Q}$ does not contain~$p$, each divergence champions a different solution. We analyze how the choice of divergence affects the outcome of VI when a Gaussian with a dense covariance matrix is approximated by a Gaussian with a diagonal covariance matrix. In this setting we show that different divergences can be \textit{ordered} by the amount that their variational approximations misestimate various measures of uncertainty, such as the variance, precision, and entropy. We also derive an impossibility theorem showing that no two of these measures can be simultaneously matched by a factorized approximation; hence, the choice of divergence informs which measure, if any, is correctly estimated. Our analysis covers the KL divergence, the R\'enyi divergences, and a score-based divergence that compares $\nabla\log p$ and $\nabla\log q$. We empirically evaluate whether these orderings hold when VI is used to approximate non-Gaussian distributions.

We study the following characterization problem. Given a set $T$ of terminals and a $(2^{|T|}-2)$-dimensional vector $\pi$ whose coordinates are indexed by proper subsets of $T$, is there a graph $G$ that contains $T$, such that for all subsets $\emptyset\subsetneq S\subsetneq T$, $\pi_S$ equals the value of the min-cut in $G$ separating $S$ from $T\setminus S$? The only known necessary conditions are submodularity and a special class of linear inequalities given by Chaudhuri, Subrahmanyam, Wagner and Zaroliagis. Our main result is a new class of linear inequalities concerning laminar families, that generalize all previous ones. Using our new class of inequalities, we can generalize Karger's approximate min-cut counting result to graphs with terminals.

A $\textit{resolving set}$ $R$ in a graph $G$ is a set of vertices such that every vertex of $G$ is uniquely identified by its distances to the vertices of $R$. Introduced in the 1970s, this concept has been since then extensively studied from both combinatorial and algorithmic point of view. We propose a generalization of the concept of resolving sets to temporal graphs, i.e., graphs with edge sets that change over discrete time-steps. In this setting, the $\textit{temporal distance}$ from $u$ to $v$ is the earliest possible time-step at which a journey with strictly increasing time-steps on edges leaving $u$ reaches $v$, i.e., the first time-step at which $v$ could receive a message broadcast from $u$. A $\textit{temporal resolving set}$ of a temporal graph $\mathcal{G}$ is a subset $R$ of its vertices such that every vertex of $\mathcal{G}$ is uniquely identified by its temporal distances from vertices of $R$. We study the problem of finding a minimum-size temporal resolving set, and show that it is NP-complete even on very restricted graph classes and with strong constraints on the time-steps: temporal complete graphs where every edge appears in either time-step 1 or 2, temporal trees where every edge appears in at most two consecutive time-steps, and even temporal subdivided stars where every edge appears in at most two (not necessarily consecutive) time-steps. On the other hand, we give polynomial-time algorithms for temporal paths and temporal stars where every edge appears in exactly one time-step, and give a combinatorial analysis and algorithms for several temporal graph classes where the edges appear in periodic time-steps.

For an n-vertex directed graph $G = (V,E)$, a $\beta$-\emph{shortcut set} $H$ is a set of additional edges $H \subseteq V \times V$ such that $G \cup H$ has the same transitive closure as $G$, and for every pair $u,v \in V$, there is a $uv$-path in $G \cup H$ with at most $\beta$ edges. A natural generalization of shortcut sets to distances is a $(\beta,\epsilon)$-\emph{hopset} $H \subseteq V \times V$, where the requirement is that $H$ and $G \cup H$ have the same shortest-path distances, and for every $u,v \in V$, there is a $(1+\epsilon)$-approximate shortest path in $G \cup H$ with at most $\beta$ edges. There is a large literature on the tradeoff between the size of a shortcut set / hopset and the value of $\beta$. We highlight the most natural point on this tradeoff: what is the minimum value of $\beta$, such that for any graph $G$, there exists a $\beta$-shortcut set (or a $(\beta,\epsilon)$-hopset) with $O(n)$ edges? Not only is this a natural structural question in its own right, but shortcuts sets / hopsets form the core of many distributed, parallel, and dynamic algorithms for reachability / shortest paths. Until very recently the best known upper bound was a folklore construction showing $\beta = O(n^{1/2})$, but in a breakthrough result Kogan and Parter [SODA 2022] improve this to $\beta = \tilde{O}(n^{1/3})$ for shortcut sets and $\tilde{O}(n^{2/5})$ for hopsets. Our result is to close the gap between shortcut sets and hopsets. That is, we show that for any graph $G$ and any fixed $\epsilon$ there is a $(\tilde{O}(n^{1/3}),\epsilon)$ hopset with $O(n)$ edges. More generally, we achieve a smooth tradeoff between hopset size and $\beta$ which exactly matches the tradeoff of Kogan and Parter for shortcut sets (up to polylog factors). Using a very recent black-box reduction of Kogan and Parter, our new hopset implies improved bounds for approximate distance preservers.

If $G$ is a group, we say a subset $S$ of $G$ is product-free if the equation $xy=z$ has no solutions with $x,y,z \in S$. For $D \in \mathbb{N}$, a group $G$ is said to be $D$-quasirandom if the minimal dimension of a nontrivial complex irreducible representation of $G$ is at least $D$. Gowers showed that in a $D$-quasirandom finite group $G$, the maximal size of a product-free set is at most $|G|/D^{1/3}$. This disproved a longstanding conjecture of Babai and S\'os from 1985. For the special unitary group, $G=SU(n)$, Gowers observed that his argument yields an upper bound of $n^{-1/3}$ on the measure of a measurable product-free subset. In this paper, we improve Gowers' upper bound to $\exp(-cn^{1/3})$, where $c>0$ is an absolute constant. In fact, we establish something stronger, namely, product-mixing for measurable subsets of $SU(n)$ with measure at least $\exp(-cn^{1/3})$; for this product-mixing result, the $n^{1/3}$ in the exponent is sharp. Our approach involves introducing novel hypercontractive inequalities, which imply that the non-Abelian Fourier spectrum of the indicator function of a small set concentrates on high-dimensional irreducible representations. Our hypercontractive inequalities are obtained via methods from representation theory, harmonic analysis, random matrix theory and differential geometry. We generalize our hypercontractive inequalities from $SU(n)$ to an arbitrary $D$-quasirandom compact connected Lie group for $D$ at least an absolute constant, thereby extending our results on product-free sets to such groups. We also demonstrate various other applications of our inequalities to geometry (viz., non-Abelian Brunn-Minkowski type inequalities), mixing times, and the theory of growth in compact Lie groups.

北京阿比特科技有限公司