Context: Navigating the knowledge of Stack Overflow (SO) remains challenging. To make the posts vivid to users, SO allows users to write and edit posts with Markdown or HTML so that users can leverage various formatting styles (e.g., bold, italic, and code) to highlight the important information. Nonetheless, there have been limited studies on the highlighted information. Objective: We carried out the first large-scale exploratory study on the information highlighted in SO answers in our recent study. To extend our previous study, we develop approaches to automatically recommend highlighted content with formatting styles using neural network architectures initially designed for the Named Entity Recognition task. Method: In this paper, we studied 31,169,429 answers of Stack Overflow. For training recommendation models, we choose CNN and BERT models for each type of formatting (i.e., Bold, Italic, Code, and Heading) using the information highlighting dataset we collected from SO answers. Results: Our models based on CNN architecture achieve precision ranging from 0.71 to 0.82. The trained model for automatic code content highlighting achieves a recall of 0.73 and an F1 score of 0.71, outperforming the trained models for other formatting styles. The BERT models have even lower recalls and F1 scores than the CNN models. Our analysis of failure cases indicates that the majority of the failure cases are missing identification (i.e., the model misses the content that is supposed to be highlighted) due to the models tend to learn the frequently highlighted words while struggling to learn less frequent words. Conclusion: Our findings suggest that it is possible to develop recommendation models for highlighting information for answers with different formatting styles on Stack Overflow.
Capture The Flag (CTF) challenges are puzzles related to computer security scenarios. With the advent of large language models (LLMs), more and more CTF participants are using LLMs to understand and solve the challenges. However, so far no work has evaluated the effectiveness of LLMs in solving CTF challenges with a fully automated workflow. We develop two CTF-solving workflows, human-in-the-loop (HITL) and fully-automated, to examine the LLMs' ability to solve a selected set of CTF challenges, prompted with information about the question. We collect human contestants' results on the same set of questions, and find that LLMs achieve higher success rate than an average human participant. This work provides a comprehensive evaluation of the capability of LLMs in solving real world CTF challenges, from real competition to fully automated workflow. Our results provide references for applying LLMs in cybersecurity education and pave the way for systematic evaluation of offensive cybersecurity capabilities in LLMs.
The adoption of Artificial Intelligence (AI) based Virtual Network Functions (VNFs) has witnessed significant growth, posing a critical challenge in orchestrating AI models within next-generation 6G networks. Finding optimal AI model placement is significantly more challenging than placing traditional software-based VNFs, due to the introduction of numerous uncertain factors by AI models, such as varying computing resource consumption, dynamic storage requirements, and changing model performance. To address the AI model placement problem under uncertainties, this paper presents a novel approach employing a sequence-to-sequence (S2S) neural network which considers uncertainty estimations. The S2S model, characterized by its encoding-decoding architecture, is designed to take the service chain with a number of AI models as input and produce the corresponding placement of each AI model. To address the introduced uncertainties, our methodology incorporates the orthonormal certificate module for uncertainty estimation and utilizes fuzzy logic for uncertainty representation, thereby enhancing the capabilities of the S2S model. Experiments demonstrate that the proposed method achieves competitive results across diverse AI model profiles, network environments, and service chain requests.
We study attribute control in language models through the method of Causal Average Treatment Effect (Causal ATE). Existing methods for the attribute control task in Language Models (LMs) check for the co-occurrence of words in a sentence with the attribute of interest, and control for them. However, spurious correlation of the words with the attribute in the training dataset, can cause models to hallucinate the presence of the attribute when presented with the spurious correlate during inference. We show that the simple perturbation-based method of Causal ATE removes this unintended effect. Specifically, we ground it in the problem of toxicity mitigation, where a significant challenge lies in the inadvertent bias that often emerges towards protected groups post detoxification. We show that this unintended bias can be solved by the use of the Causal ATE metric and rigorously prove our claim. We provide experimental validations for our claims and release our code (anonymously) here: //github.com/causalate-mitigates-bias/causal-ate-mitigates-bias.
Despite their powerful semantic understanding and code generation capabilities, Large Language Models (LLMs) still face challenges when dealing with complex tasks. Multi agent strategy generation and motion control are highly complex domains that inherently require experts from multiple fields to collaborate. To enhance multi agent strategy generation and motion control, we propose an innovative architecture that employs the concept of a cloud edge end hierarchical structure. By leveraging multiple large language models with distinct areas of expertise, we can efficiently generate strategies and perform task decomposition. Introducing the cosine similarity approach,aligning task decomposition instructions with robot task sequences at the vector level, we can identify subtasks with incomplete task decomposition and iterate on them multiple times to ultimately generate executable machine task sequences.The robot is guided through these task sequences to complete tasks of higher complexity. With this architecture, we implement the process of natural language control of robots to perform complex tasks, and successfully address the challenge of multi agent execution of open tasks in open scenarios and the problem of task decomposition.
Internet of Medical Things (IoMT) deals with a patient-data-rich segment, which makes security and privacy a severe concern for patients. Therefore, access control is a significant aspect of ensuring trust in the IoMT. However, deploying existing authentication and authorization solutions to the Internet of Medical Things (IoMT) is not straightforward because of highly dynamic and possibly unprotected environments and untrusted supply chain for the IoT devices. In this article, we propose Soter, a Zero-Trust based authentication system for the IoMT. Soter Incorporates trust negotiation mechanisms within the Zero Trust framework to enable dynamic trust establishment. When a user or device seeks access to a resource, initiate a trust negotiation process. During this process, credentials, attributes, and contextual information are exchanged between the requester and the resource owner. Soter defines access rules based on various factors, including user identity, device health, and location. Access is granted or denied based on these conditions.
Decentralized Gradient Descent (D-GD) allows a set of users to perform collaborative learning without sharing their data by iteratively averaging local model updates with their neighbors in a network graph. The absence of direct communication between non-neighbor nodes might lead to the belief that users cannot infer precise information about the data of others. In this work, we demonstrate the opposite, by proposing the first attack against D-GD that enables a user (or set of users) to reconstruct the private data of other users outside their immediate neighborhood. Our approach is based on a reconstruction attack against the gossip averaging protocol, which we then extend to handle the additional challenges raised by D-GD. We validate the effectiveness of our attack on real graphs and datasets, showing that the number of users compromised by a single or a handful of attackers is often surprisingly large. We empirically investigate some of the factors that affect the performance of the attack, namely the graph topology, the number of attackers, and their position in the graph.
In the age of the Internet, people's lives are increasingly dependent on today's network technology. However, network technology is a double-edged sword, bringing convenience to people but also posing many security challenges. Maintaining network security and protecting the legitimate interests of users is at the heart of network construction. Threat detection is an important part of a complete and effective defense system. In the field of network information security, the technical update of network attack and network protection is spiraling. How to effectively detect unknown threats is one of the concerns of network protection. Currently, network threat detection is usually based on rules and traditional machine learning methods, which create artificial rules or extract common spatiotemporal features, which cannot be applied to large-scale data applications, and the emergence of unknown threats causes the detection accuracy of the original model to decline. With this in mind, this paper uses deep learning for advanced threat detection to improve cybersecurity resilienc e in the financial industry. Many network security researchers have shifted their focus to exceptio n-based intrusion detection techniques. The detection technology mainly uses statistical machine learning methods - collecting normal program and network behavior data, extracting multidimensional features, and training decision machine learning models on this basis (commonly used include naive Bayes, decision trees, support vector machines, random forests, etc.). In the detection phase, program code or network behavior that deviates from the normal value beyond the tolerance is considered malicious code or network attack behavior.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.