亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Free categorical constructions characterise quantum computing as the combination of two copies of a reversible classical model, glued by the complementarity equations of classical structures. This recipe effectively constructs a computationally universal quantum programming language from two copies of Pi, the internal language of rig groupoids. The construction consists of Hughes' arrows. Thus answer positively the question whether a computational effect exists that turns reversible classical computation into quantum computation: the quantum effect. Measurements can be added by layering a further effect on top. Our construction also enables some reasoning about quantum programs (with or without measurement) through a combination of classical reasoning and reasoning about complementarity.

相關內容

It is an important question to find constructions of quantum cryptographic protocols which rely on weaker computational assumptions than classical protocols. Recently, it has been shown that oblivious transfer and multi-party computation can be constructed from one-way functions, whereas this is impossible in the classical setting in a black-box way. In this work, we study the question of building quantum public-key encryption schemes from one-way functions and even weaker assumptions. Firstly, we revisit the definition of IND-CPA security to this setting. Then, we propose three schemes for quantum public-key encryption from one-way functions, pseudorandom function-like states with proof of deletion and pseudorandom function-like states, respectively.

Quantum adversarial machine learning is an emerging field that studies the vulnerability of quantum learning systems against adversarial perturbations and develops possible defense strategies. Quantum universal adversarial perturbations are small perturbations, which can make different input samples into adversarial examples that may deceive a given quantum classifier. This is a field that was rarely looked into but worthwhile investigating because universal perturbations might simplify malicious attacks to a large extent, causing unexpected devastation to quantum machine learning models. In this paper, we take a step forward and explore the quantum universal perturbations in the context of heterogeneous classification tasks. In particular, we find that quantum classifiers that achieve almost state-of-the-art accuracy on two different classification tasks can be both conclusively deceived by one carefully-crafted universal perturbation. This result is explicitly demonstrated with well-designed quantum continual learning models with elastic weight consolidation method to avoid catastrophic forgetting, as well as real-life heterogeneous datasets from hand-written digits and medical MRI images. Our results provide a simple and efficient way to generate universal perturbations on heterogeneous classification tasks and thus would provide valuable guidance for future quantum learning technologies.

We revisit the problem of computing with noisy information considered in Feige et al. 1994, which includes computing the OR function from noisy queries, and computing the MAX, SEARCH and SORT functions from noisy pairwise comparisons. For $K$ given elements, the goal is to correctly recover the desired function with probability at least $1-\delta$ when the outcome of each query is flipped with probability $p$. We consider both the adaptive sampling setting where each query can be adaptively designed based on past outcomes, and the non-adaptive sampling setting where the query cannot depend on past outcomes. The prior work provides tight bounds on the worst-case query complexity in terms of the dependence on $K$. However, the upper and lower bounds do not match in terms of the dependence on $\delta$ and $p$. We improve the lower bounds for all the four functions under both adaptive and non-adaptive query models. Most of our lower bounds match the upper bounds up to constant factors when either $p$ or $\delta$ is bounded away from $0$, while the ratio between the best prior upper and lower bounds goes to infinity when $p\rightarrow 0$ or $p\rightarrow 1/2$. On the other hand, we also provide matching upper and lower bounds for the number of queries in expectation, improving both the upper and lower bounds for the variable-length query model.

Partial differential equations (PDEs) are ubiquitous in science and engineering. Prior quantum algorithms for solving the system of linear algebraic equations obtained from discretizing a PDE have a computational complexity that scales at least linearly with the condition number $\kappa$ of the matrices involved in the computation. For many practical applications, $\kappa$ scales polynomially with the size $N$ of the matrices, rendering a polynomial-in-$N$ complexity for these algorithms. Here we present a quantum algorithm with a complexity that is polylogarithmic in $N$ but is independent of $\kappa$ for a large class of PDEs. Our algorithm generates a quantum state that enables extracting features of the solution. Central to our methodology is using a wavelet basis as an auxiliary system of coordinates in which the condition number of associated matrices is independent of $N$ by a simple diagonal preconditioner. We present numerical simulations showing the effect of the wavelet preconditioner for several differential equations. Our work could provide a practical way to boost the performance of quantum-simulation algorithms where standard methods are used for discretization.

A key consideration in the development of numerical schemes for time-dependent partial differential equations (PDEs) is the ability to preserve certain properties of the continuum solution, such as associated conservation laws or other geometric structures of the solution. There is a long history of the development and analysis of such structure-preserving discretisation schemes, including both proofs that standard schemes have structure-preserving properties and proposals for novel schemes that achieve both high-order accuracy and exact preservation of certain properties of the continuum differential equation. When coupled with implicit time-stepping methods, a major downside to these schemes is that their structure-preserving properties generally rely on exact solution of the (possibly nonlinear) systems of equations defining each time-step in the discrete scheme. For small systems, this is often possible (up to the accuracy of floating-point arithmetic), but it becomes impractical for the large linear systems that arise when considering typical discretisation of space-time PDEs. In this paper, we propose a modification to the standard flexible generalised minimum residual (FGMRES) iteration that enforces selected constraints on approximate numerical solutions. We demonstrate its application to both systems of conservation laws and dissipative systems.

A central challenge in the verification of quantum computers is benchmarking their performance as a whole and demonstrating their computational capabilities. In this work, we find a model of quantum computation, Bell sampling, that can be used for both of those tasks and thus provides an ideal stepping stone towards fault-tolerance. In Bell sampling, we measure two copies of a state prepared by a quantum circuit in the transversal Bell basis. We show that the Bell samples are classically intractable to produce and at the same time constitute what we call a circuit shadow: from the Bell samples we can efficiently extract information about the quantum circuit preparing the state, as well as diagnose circuit errors. In addition to known properties that can be efficiently extracted from Bell samples, we give two new and efficient protocols, a test for the depth of the circuit and an algorithm to estimate a lower bound to the number of T gates in the circuit. With some additional measurements, our algorithm learns a full description of states prepared by circuits with low T-count.

Word frequency is a strong predictor in most lexical processing tasks. Thus, any model of word recognition needs to account for how word frequency effects arise. The Discriminative Lexicon Model (DLM; Baayen et al., 2018a, 2019) models lexical processing with linear mappings between words' forms and their meanings. So far, the mappings can either be obtained incrementally via error-driven learning, a computationally expensive process able to capture frequency effects, or in an efficient, but frequency-agnostic closed-form solution modelling the theoretical endstate of learning (EL) where all words are learned optimally. In this study we show how an efficient, yet frequency-informed mapping between form and meaning can be obtained (Frequency-informed learning; FIL). We find that FIL well approximates an incremental solution while being computationally much cheaper. FIL shows a relatively low type- and high token-accuracy, demonstrating that the model is able to process most word tokens encountered by speakers in daily life correctly. We use FIL to model reaction times in the Dutch Lexicon Project (Keuleers et al., 2010) and find that FIL predicts well the S-shaped relationship between frequency and the mean of reaction times but underestimates the variance of reaction times for low frequency words. FIL is also better able to account for priming effects in an auditory lexical decision task in Mandarin Chinese (Lee, 2007), compared to EL. Finally, we used ordered data from CHILDES (Brown, 1973; Demuth et al., 2006) to compare mappings obtained with FIL and incremental learning. The mappings are highly correlated, but with FIL some nuances based on word ordering effects are lost. Our results show how frequency effects in a learning model can be simulated efficiently by means of a closed-form solution, and raise questions about how to best account for low-frequency words in cognitive models.

We present new results on average causal effects in settings with unmeasured exposure-outcome confounding. Our results are motivated by a class of estimands, e.g., frequently of interest in medicine and public health, that are currently not targeted by standard approaches for average causal effects. We recognize these estimands as queries about the average causal effect of an intervening variable. We anchor our introduction of these estimands in an investigation of the role of chronic pain and opioid prescription patterns in the opioid epidemic, and illustrate how conventional approaches will lead unreplicable estimates with ambiguous policy implications. We argue that our altenative effects are replicable and have clear policy implications, and furthermore are non-parametrically identified by the classical frontdoor formula. As an independent contribution, we derive a new semiparametric efficient estimator of the frontdoor formula with a uniform sample boundedness guarantee. This property is unique among previously-described estimators in its class, and we demonstrate superior performance in finite-sample settings. Theoretical results are applied with data from the National Health and Nutrition Examination Survey.

We construct a quantum oracle relative to which $\mathsf{BQP} = \mathsf{QMA}$ but cryptographic pseudorandom quantum states and pseudorandom unitary transformations exist, a counterintuitive result in light of the fact that pseudorandom states can be "broken" by quantum Merlin-Arthur adversaries. We explain how this nuance arises as the result of a distinction between algorithms that operate on quantum and classical inputs. On the other hand, we show that some computational complexity assumption is needed to construct pseudorandom states, by proving that pseudorandom states do not exist if $\mathsf{BQP} = \mathsf{PP}$. We discuss implications of these results for cryptography, complexity theory, and quantum tomography.

The reconstruction of quantum states from experimental measurements, often achieved using quantum state tomography (QST), is crucial for the verification and benchmarking of quantum devices. However, performing QST for a generic unstructured quantum state requires an enormous number of state copies that grows \emph{exponentially} with the number of individual quanta in the system, even for the most optimal measurement settings. Fortunately, many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured. In one dimension, such states are expected to be well approximated by matrix product operators (MPOs) with a finite matrix/bond dimension independent of the number of qubits, therefore enabling efficient state representation. Nevertheless, it is still unclear whether efficient QST can be performed for these states in general. In this paper, we attempt to bridge this gap and establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes. We begin by studying two types of random measurement settings: Gaussian measurements and Haar random rank-one Positive Operator Valued Measures (POVMs). We show that the information contained in an MPO with a finite bond dimension can be preserved using a number of random measurements that depends only \emph{linearly} on the number of qubits, assuming no statistical error of the measurements. We then study MPO-based QST with physical quantum measurements through Haar random rank-one POVMs that can be implemented on quantum computers. We prove that only a \emph{polynomial} number of state copies in the number of qubits is required to guarantee bounded recovery error of an MPO state.

北京阿比特科技有限公司