Vector mean estimation is a central primitive in federated analytics. In vector mean estimation, each user $i \in [n]$ holds a real-valued vector $v_i\in [-1, 1]^d$, and a server wants to Not only so, we would like to protect each individual user's privacy. In this paper, we consider the $k$-sparse version of the vector mean estimation problem, that is, suppose that each user's vector has at most $k$ non-zero coordinates in its $d$-dimensional vector, and moreover, $k \ll d$. In practice, since the universe size $d$ can be very large (e.g., the space of all possible URLs), we would like the per-user communication to be succinct, i.e., independent of or (poly-)logarithmic in the universe size. In this paper, we are the first to show matching upper- and lower-bounds for the $k$-sparse vector mean estimation problem under local differential privacy. Specifically, we construct new mechanisms that achieve asymptotically optimal error as well as succinct communication, either under user-level-LDP or event-level-LDP. We implement our algorithms and evaluate them on synthetic as well as real-world datasets. Our experiments show that we can often achieve one or two orders of magnitude reduction in error in comparison with prior works under typical choices of parameters, while incurring insignificant communication cost.
Although robust learning and local differential privacy are both widely studied fields of research, combining the two settings is an almost unexplored topic. We consider the problem of estimating a discrete distribution in total variation from $n$ contaminated data batches under a local differential privacy constraint. A fraction $1-\epsilon$ of the batches contain $k$ i.i.d. samples drawn from a discrete distribution $p$ over $d$ elements. To protect the users' privacy, each of the samples is privatized using an $\alpha$-locally differentially private mechanism. The remaining $\epsilon n $ batches are an adversarial contamination. The minimax rate of estimation under contamination alone, with no privacy, is known to be $\epsilon/\sqrt{k}+\sqrt{d/kn}$, up to a $\sqrt{\log(1/\epsilon)}$ factor. Under the privacy constraint alone, the minimax rate of estimation is $\sqrt{d^2/\alpha^2 kn}$. We show that combining the two constraints leads to a minimax estimation rate of $\epsilon\sqrt{d/\alpha^2 k}+\sqrt{d^2/\alpha^2 kn}$ up to a $\sqrt{\log(1/\epsilon)}$ factor, larger than the sum of the two separate rates. We provide a polynomial-time algorithm achieving this bound, as well as a matching information theoretic lower bound.
We consider the problem of sparse normal means estimation in a distributed setting with communication constraints. We assume there are $M$ machines, each holding $d$-dimensional observations of a $K$-sparse vector $\mu$ corrupted by additive Gaussian noise. The $M$ machines are connected in a star topology to a fusion center, whose goal is to estimate the vector $\mu$ with a low communication budget. Previous works have shown that to achieve the centralized minimax rate for the $\ell_2$ risk, the total communication must be high - at least linear in the dimension $d$. This phenomenon occurs, however, at very weak signals. We show that at signal-to-noise ratios (SNRs) that are sufficiently high - but not enough for recovery by any individual machine - the support of $\mu$ can be correctly recovered with significantly less communication. Specifically, we present two algorithms for distributed estimation of a sparse mean vector corrupted by either Gaussian or sub-Gaussian noise. We then prove that above certain SNR thresholds, with high probability, these algorithms recover the correct support with total communication that is sublinear in the dimension $d$. Furthermore, the communication decreases exponentially as a function of signal strength. If in addition $KM\ll \tfrac{d}{\log d}$, then with an additional round of sublinear communication, our algorithms achieve the centralized rate for the $\ell_2$ risk. Finally, we present simulations that illustrate the performance of our algorithms in different parameter regimes.
Firms and statistical agencies that publish aggregate data face practical and legal requirements to protect the privacy of individuals. Increasingly, these organizations meet these standards by using publication mechanisms which satisfy differential privacy. We consider the problem of choosing such a mechanism so as to maximize the value of its output to end users. We show that this is equivalent to a constrained information design problem, and characterize its solution. Moreover, by introducing a new order on information structures and showing that it ranks them by their usefulness to agents with supermodular payoffs, we show that the simple geometric mechanism is optimal whenever data users face supermodular decision problems.
Large-scale machine learning systems often involve data distributed across a collection of users. Federated optimization algorithms leverage this structure by communicating model updates to a central server, rather than entire datasets. In this paper, we study stochastic optimization algorithms for a personalized federated learning setting involving local and global models subject to user-level (joint) differential privacy. While learning a private global model induces a cost of privacy, local learning is perfectly private. We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy. We illustrate our theoretical results with experiments on synthetic and real-world datasets.
Let $P$ be a linear differential operator over $\mathcal{D} \subset \mathbb{R}^d$ and $U = (U_x)_{x \in \mathcal{D}}$ a second order stochastic process. In the first part of this article, we prove a new necessary and sufficient condition for all the trajectories of $U$ to verify the partial differential equation (PDE) $T(U) = 0$. This condition is formulated in terms of the covariance kernel of $U$. When compared to previous similar results, the novelty lies in that the equality $T(U) = 0$ is understood in the \textit{sense of distributions}, which is a relevant framework for PDEs. This theorem provides precious insights during the second part of this article, devoted to performing "physically informed" machine learning for the homogeneous 3 dimensional free space wave equation. We perform Gaussian process regression (GPR) on pointwise observations of a solution of this PDE. To do so, we propagate Gaussian processes (GP) priors over its initial conditions through the wave equation. We obtain explicit formulas for the covariance kernel of the propagated GP, which can then be used for GPR. We then explore the particular cases of radial symmetry and point source. For the former, we derive convolution-free GPR formulas; for the latter, we show a direct link between GPR and the classical triangulation method for point source localization used in GPS systems. Additionally, this Bayesian framework provides a new answer for the ill-posed inverse problem of reconstructing initial conditions for the wave equation with a limited number of sensors, and simultaneously enables the inference of physical parameters from these data. Finally, we illustrate this physically informed GPR on a number of practical examples.
We consider the lower bounds of differentially private empirical risk minimization (DP-ERM) for convex functions in constrained/unconstrained cases with respect to the general $\ell_p$ norm beyond the $\ell_2$ norm considered by most of the previous works. We provide a simple black-box reduction approach which can generalize lower bounds in constrained case to unconstrained case. For $(\epsilon,\delta)$-DP, we achieve $\Omega(\frac{\sqrt{d \log(1/\delta)}}{\epsilon n})$ lower bounds for both constrained and unconstrained cases and any $\ell_p$ geometry where $p\geq 1$ by introducing a novel biased mean property for fingerprinting codes, where $n$ is the size of the data-set and $d$ is the dimension.
We propose a reparametrization scheme to address the challenges of applying differentially private SGD on large neural networks, which are 1) the huge memory cost of storing individual gradients, 2) the added noise suffering notorious dimensional dependence. Specifically, we reparametrize each weight matrix with two \emph{gradient-carrier} matrices of small dimension and a \emph{residual weight} matrix. We argue that such reparametrization keeps the forward/backward process unchanged while enabling us to compute the projected gradient without computing the gradient itself. To learn with differential privacy, we design \emph{reparametrized gradient perturbation (RGP)} that perturbs the gradients on gradient-carrier matrices and reconstructs an update for the original weight from the noisy gradients. Importantly, we use historical updates to find the gradient-carrier matrices, whose optimality is rigorously justified under linear regression and empirically verified with deep learning tasks. RGP significantly reduces the memory cost and improves the utility. For example, we are the first able to apply differential privacy on the BERT model and achieve an average accuracy of $83.9\%$ on four downstream tasks with $\epsilon=8$, which is within $5\%$ loss compared to the non-private baseline but enjoys much lower privacy leakage risk.
Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.
Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.
Machine Learning is a widely-used method for prediction generation. These predictions are more accurate when the model is trained on a larger dataset. On the other hand, the data is usually divided amongst different entities. For privacy reasons, the training can be done locally and then the model can be safely aggregated amongst the participants. However, if there are only two participants in \textit{Collaborative Learning}, the safe aggregation loses its power since the output of the training already contains much information about the participants. To resolve this issue, they must employ privacy-preserving mechanisms, which inevitably affect the accuracy of the model. In this paper, we model the training process as a two-player game where each player aims to achieve a higher accuracy while preserving its privacy. We introduce the notion of \textit{Price of Privacy}, a novel approach to measure the effect of privacy protection on the accuracy of the model. We develop a theoretical model for different player types, and we either find or prove the existence of a Nash Equilibrium with some assumptions. Moreover, we confirm these assumptions via a Recommendation Systems use case: for a specific learning algorithm, we apply three privacy-preserving mechanisms on two real-world datasets. Finally, as a complementary work for the designed game, we interpolate the relationship between privacy and accuracy for this use case and present three other methods to approximate it in a real-world scenario.