亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gaussian process regression (GPR) model is a popular nonparametric regression model. In GPR, features of the regression function such as varying degrees of smoothness and periodicities are modeled through combining various covarinace kernels, which are supposed to model certain effects. The covariance kernels have unknown parameters which are estimated by the EM-algorithm or Markov Chain Monte Carlo. The estimated parameters are keys to the inference of the features of the regression functions, but identifiability of these parameters has not been investigated. In this paper, we prove identifiability of covariance kernel parameters in two radial basis mixed kernel GPR and radial basis and periodic mixed kernel GPR. We also provide some examples about non-identifiable cases in such mixed kernel GPRs.

相關內容

Covariant Lyapunov vectors characterize the directions along which perturbations in dynamical systems grow. They have also been studied as predictors of critical transitions and extreme events. For many applications like, for example, prediction, it is necessary to estimate the vectors from data since model equations are unknown for many interesting phenomena. We propose a novel method for estimating covariant Lyapunov vectors based on data records without knowing the underlying equations of the system. In contrast to previous approaches, our approach can be applied to high-dimensional data-sets. We demonstrate that this purely data-driven approach can accurately estimate covariant Lyapunpov vectors from data records generated by low and high-dimensional dynamical systems. The highest dimension of a time-series from which covariant Lyapunov vectors were estimated in this contribution is 128. Being able to infer covariant Lyapunov vectors from data-records could encourage numerous future applications in data-analysis and data-based predictions.

Vector autoregression model is ubiquitous in classical time series data analysis. With the rapid advance of social network sites, time series data over latent graph is becoming increasingly popular. In this paper, we develop a novel Bayesian grouped network autoregression model to simultaneously estimate group information (number of groups and group configurations) and group-wise parameters. Specifically, a graphically assisted Chinese restaurant process is incorporated under framework of the network autoregression model to improve the statistical inference performance. An efficient Markov chain Monte Carlo sampling algorithm is used to sample from the posterior distribution. Extensive studies are conducted to evaluate the finite sample performance of our proposed methodology. Additionally, we analyze two real datasets as illustrations of the effectiveness of our approach.

We consider a sparse deep ReLU network (SDRN) estimator obtained from empirical risk minimization with a Lipschitz loss function in the presence of a large number of features. Our framework can be applied to a variety of regression and classification problems. The unknown target function to estimate is assumed to be in a Sobolev space with mixed derivatives. Functions in this space only need to satisfy a smoothness condition rather than having a compositional structure. We develop non-asymptotic excess risk bounds for our SDRN estimator. We further derive that the SDRN estimator can achieve the same minimax rate of estimation (up to logarithmic factors) as one-dimensional nonparametric regression when the dimension of the features is fixed, and the estimator has a suboptimal rate when the dimension grows with the sample size. We show that the depth and the total number of nodes and weights of the ReLU network need to grow as the sample size increases to ensure a good performance, and also investigate how fast they should increase with the sample size. These results provide an important theoretical guidance and basis for empirical studies by deep neural networks.

Motivated by the case fatality rate (CFR) of COVID-19, in this paper, we develop a fully parametric quantile regression model based on the generalized three-parameter beta (GB3) distribution. Beta regression models are primarily used to model rates and proportions. However, these models are usually specified in terms of a conditional mean. Therefore, they may be inadequate if the observed response variable follows an asymmetrical distribution, such as CFR data. In addition, beta regression models do not consider the effect of the covariates across the spectrum of the dependent variable, which is possible through the conditional quantile approach. In order to introduce the proposed GB3 regression model, we first reparameterize the GB3 distribution by inserting a quantile parameter and then we develop the new proposed quantile model. We also propose a simple interpretation of the predictor-response relationship in terms of percentage increases/decreases of the quantile. A Monte Carlo study is carried out for evaluating the performance of the maximum likelihood estimates and the choice of the link functions. Finally, a real COVID-19 dataset from Chile is analyzed and discussed to illustrate the proposed approach.

Spatial process models popular in geostatistics often represent the observed data as the sum of a smooth underlying process and white noise. The variation in the white noise is attributed to measurement error, or micro-scale variability, and is called the "nugget". We formally establish results on the identifiability and consistency of the nugget in spatial models based upon the Gaussian process within the framework of in-fill asymptotics, i.e. the sample size increases within a sampling domain that is bounded. Our work extends results in fixed domain asymptotics for spatial models without the nugget. More specifically, we establish the identifiability of parameters in the Mat\'ern covariance function and the consistency of their maximum likelihood estimators in the presence of discontinuities due to the nugget. We also present simulation studies to demonstrate the role of the identifiable quantities in spatial interpolation.

We introduce a novel rule-based approach for handling regression problems. The new methodology carries elements from two frameworks: (i) it provides information about the uncertainty of the parameters of interest using Bayesian inference, and (ii) it allows the incorporation of expert knowledge through rule-based systems. The blending of those two different frameworks can be particularly beneficial for various domains (e.g. engineering), where, even though the significance of uncertainty quantification motivates a Bayesian approach, there is no simple way to incorporate researcher intuition into the model. We validate our models by applying them to synthetic applications: a simple linear regression problem and two more complex structures based on partial differential equations. Finally, we review the advantages of our methodology, which include the simplicity of the implementation, the uncertainty reduction due to the added information and, in some occasions, the derivation of better point predictions, and we address limitations, mainly from the computational complexity perspective, such as the difficulty in choosing an appropriate algorithm and the added computational burden.

Estimation of the mean vector and covariance matrix is of central importance in the analysis of multivariate data. In the framework of generalized linear models, usually the variances are certain functions of the means with the normal distribution being an exception. We study some implications of functional relationships between covariance and the mean by focusing on the maximum likelihood and Bayesian estimation of the mean-covariance under the joint constraint $\bm{\Sigma}\bm{\mu} = \bm{\mu}$ for a multivariate normal distribution. A novel structured covariance is proposed through reparameterization of the spectral decomposition of $\bm{\Sigma}$ involving its eigenvalues and $\bm{\mu}$. This is designed to address the challenging issue of positive-definiteness and to reduce the number of covariance parameters from quadratic to linear function of the dimension. We propose a fast (noniterative) method for approximating the maximum likelihood estimator by maximizing a lower bound for the profile likelihood function, which is concave. We use normal and inverse gamma priors on the mean and eigenvalues, and approximate the maximum aposteriori estimators by both MH within Gibbs sampling and a faster iterative method. A simulation study shows good performance of our estimators.

We develop a post-selective Bayesian framework to jointly and consistently estimate parameters in group-sparse linear regression models. After selection with the Group LASSO (or generalized variants such as the overlapping, sparse, or standardized Group LASSO), uncertainty estimates for the selected parameters are unreliable in the absence of adjustments for selection bias. Existing post-selective approaches are limited to uncertainty estimation for (i) real-valued projections onto very specific selected subspaces for the group-sparse problem, (ii) selection events categorized broadly as polyhedral events that are expressible as linear inequalities in the data variables. Our Bayesian methods address these gaps by deriving a likelihood adjustment factor, and an approximation thereof, that eliminates bias from selection. Paying a very nominal price for this adjustment, experiments on simulated data, and data from the Human Connectome Project demonstrate the efficacy of our methods for a joint estimation of group-sparse parameters and their uncertainties post selection.

This paper studies the non-asymptotic merits of the double $\ell_1$-regularized for heterogeneous overdispersed count data via negative binomial regressions. Under the restricted eigenvalue conditions, we prove the oracle inequalities for Lasso estimators of two partial regression coefficients for the first time, using concentration inequalities of empirical processes. Furthermore, derived from the oracle inequalities, the consistency and convergence rate for the estimators are the theoretical guarantees for further statistical inference. Finally, both simulations and a real data analysis demonstrate that the new methods are effective.

Heatmap-based methods dominate in the field of human pose estimation by modelling the output distribution through likelihood heatmaps. In contrast, regression-based methods are more efficient but suffer from inferior performance. In this work, we explore maximum likelihood estimation (MLE) to develop an efficient and effective regression-based methods. From the perspective of MLE, adopting different regression losses is making different assumptions about the output density function. A density function closer to the true distribution leads to a better regression performance. In light of this, we propose a novel regression paradigm with Residual Log-likelihood Estimation (RLE) to capture the underlying output distribution. Concretely, RLE learns the change of the distribution instead of the unreferenced underlying distribution to facilitate the training process. With the proposed reparameterization design, our method is compatible with off-the-shelf flow models. The proposed method is effective, efficient and flexible. We show its potential in various human pose estimation tasks with comprehensive experiments. Compared to the conventional regression paradigm, regression with RLE bring 12.4 mAP improvement on MSCOCO without any test-time overhead. Moreover, for the first time, especially on multi-person pose estimation, our regression method is superior to the heatmap-based methods. Our code is available at //github.com/Jeff-sjtu/res-loglikelihood-regression

北京阿比特科技有限公司