Video frame interpolation (VFI) increases the video frame rate by inserting a reconstruction frame into two consecutive frames. Due to the limitation of the fixed frame rate of ordinary camera, the frame-only video frame interpolation methods inevitably lose the dynamics in the interval between consecutive frames. In order to compensate for the lack of inter-frame information, motion models are often used, but those models cannot account for the real motions. Event cameras are bio-inspired vision sensor, each pixel of which independently perceives and encodes relative changes in light intensity. Event cameras output sparse, asynchronous streams of events instead of frames, with advantages of high temporal resolution, high dynamics, and low power consumption. An event is usually expressed as a tuple e=(x,y,p,t), which means that at timestamp t, an event with polarity is generated at the pixel (x,y). Positive polarity indicates that the change of light intensity from week to strong is beyond the threshold, while negative polarity is just the opposite. Because an event camera has high temporal resolution up to microseconds, it can capture complete changes or motion between frames. The event flow is the embodiment of inter-frame changes. Therefore, the optical flow estimated from the events does not require any motion model to be fitted, which can be inherently nonlinear. Since events lack intensity information, frame-based optical flow is complementary to event-based optical flow. By combining these two kinds of optical flow, more accurate estimation results can be obtained. Meanwhile, it is possible to reconstruct high-quality keyframes at any timestamp, since real inter-frame dynamics are captured.
Polygonal meshes have become the standard for discretely approximating 3D shapes, thanks to their efficiency and high flexibility in capturing non-uniform shapes. This non-uniformity, however, leads to irregularity in the mesh structure, making tasks like segmentation of 3D meshes particularly challenging. Semantic segmentation of 3D mesh has been typically addressed through CNN-based approaches, leading to good accuracy. Recently, transformers have gained enough momentum both in NLP and computer vision fields, achieving performance at least on par with CNN models, supporting the long-sought architecture universalism. Following this trend, we propose a transformer-based method for semantic segmentation of 3D mesh motivated by a better modeling of the graph structure of meshes, by means of global attention mechanisms. In order to address the limitations of standard transformer architectures in modeling relative positions of non-sequential data, as in the case of 3D meshes, as well as in capturing the local context, we perform positional encoding by means the Laplacian eigenvectors of the adjacency matrix, replacing the traditional sinusoidal positional encodings, and by introducing clustering-based features into the self-attention and cross-attention operators. Experimental results, carried out on three sets of the Shape COSEG Dataset, on the human segmentation dataset proposed in Maron et al., 2017 and on the ShapeNet benchmark, show how the proposed approach yields state-of-the-art performance on semantic segmentation of 3D meshes.
Deep learning is increasingly impacting various aspects of contemporary society. Artificial neural networks have emerged as the dominant models for solving an expanding range of tasks. The introduction of Neural Architecture Search (NAS) techniques, which enable the automatic design of task-optimal networks, has led to remarkable advances. However, the NAS process is typically associated with long execution times and significant computational resource requirements. Once-For-All (OFA) and its successor, Once-For-All-2 (OFAv2), have been developed to mitigate these challenges. While maintaining exceptional performance and eliminating the need for retraining, they aim to build a single super-network model capable of directly extracting sub-networks satisfying different constraints. Neural Architecture Transfer (NAT) was developed to maximise the effectiveness of extracting sub-networks from a super-network. In this paper, we present NATv2, an extension of NAT that improves multi-objective search algorithms applied to dynamic super-network architectures. NATv2 achieves qualitative improvements in the extractable sub-networks by exploiting the improved super-networks generated by OFAv2 and incorporating new policies for initialisation, pre-processing and updating its networks archive. In addition, a post-processing pipeline based on fine-tuning is introduced. Experimental results show that NATv2 successfully improves NAT and is highly recommended for investigating high-performance architectures with a minimal number of parameters.
This paper is a collection of results on combinatorial properties of codes for the Z-channel. A Z-channel with error fraction $\tau$ takes as input a length-$n$ binary codeword and injects in an adversarial manner up to $n\tau$ asymmetric errors, i.e., errors that only zero out bits but do not flip $0$'s to $1$'s. It is known that the largest $(L-1)$-list-decodable code for the Z-channel with error fraction $\tau$ has exponential size (in $n$) if $\tau$ is less than a critical value that we call the $(L-1)$-list-decoding Plotkin point and has constant size if $\tau$ is larger than the threshold. The $(L-1)$-list-decoding Plotkin point is known to be $ L^{-\frac{1}{L-1}} - L^{-\frac{L}{L-1}} $, which equals $1/4$ for unique-decoding with $ L-1=1 $. In this paper, we derive various results for the size of the largest codes above and below the list-decoding Plotkin point. In particular, we show that the largest $(L-1)$-list-decodable code $\epsilon$-above the Plotkin point, {for any given sufficiently small positive constant $ \epsilon>0 $,} has size $\Theta_L(\epsilon^{-3/2})$ for any $L-1\ge1$. We also devise upper and lower bounds on the exponential size of codes below the list-decoding Plotkin point.
The detection of exoplanets with the radial velocity method consists in detecting variations of the stellar velocity caused by an unseen sub-stellar companion. Instrumental errors, irregular time sampling, and different noise sources originating in the intrinsic variability of the star can hinder the interpretation of the data, and even lead to spurious detections. In recent times, work began to emerge in the field of extrasolar planets that use Machine Learning algorithms, some with results that exceed those obtained with the traditional techniques in the field. We seek to explore the scope of the neural networks in the radial velocity method, in particular for exoplanet detection in the presence of correlated noise of stellar origin. In this work, a neural network is proposed to replace the computation of the significance of the signal detected with the radial velocity method and to classify it as of planetary origin or not. The algorithm is trained using synthetic data of systems with and without planetary companions. We injected realistic correlated noise in the simulations, based on previous studies of the behaviour of stellar activity. The performance of the network is compared to the traditional method based on null hypothesis significance testing. The network achieves 28 % fewer false positives. The improvement is observed mainly in the detection of small-amplitude signals associated with low-mass planets. In addition, its execution time is five orders of magnitude faster than the traditional method. The superior performance exhibited by the algorithm has only been tested on simulated radial velocity data so far. Although in principle it should be straightforward to adapt it for use in real time series, its performance has to be tested thoroughly. Future work should permit evaluating its potential for adoption as a valuable tool for exoplanet detection.
Objective: Bland and Altman plot method is a widely cited and applied graphical approach for assessing the equivalence of quantitative measurement techniques, usually aiming to replace a traditional technique with a new, less invasive, or less expensive one. Although easy to communicate, Bland and Altman plot is often misinterpreted by lacking suitable inferential statistical support. Usual alternatives, such as Pearson's correlation or ordinal least-square linear regression, also fail to locate the weakness of each measurement technique. Method: Here, inferential statistics support for equivalence between measurement techniques is proposed in three nested tests based on structural regressions to assess the equivalence of structural means (accuracy), the equivalence of structural variances (precision), and concordance with the structural bisector line (agreement in measurements obtained from the same subject), by analytical methods and robust approach by bootstrapping. Graphical outputs are also implemented to follow Bland and Altman's principles for easy communication. Results: The performance of this method is shown and confronted with five data sets from previously published articles that applied Bland and Altman's method. One case demonstrated strict equivalence, three cases showed partial equivalence, and one showed poor equivalence. The developed R package containing open codes and data are available with installation instructions for free distribution at Harvard Dataverse at //doi.org/10.7910/DVN/AGJPZH. It is possible to test whether two techniques may have full equivalence, preserving graphical communication according to Bland and Altman's principles, but adding robust and suitable inferential statistics. Decomposing the equivalence in accuracy, precision, and agreement helps the location of the source of the problem in order to fix a new technique.
In Japan, the Housing and Land Survey (HLS) provides municipality-level grouped data on household incomes. Although these data can be used for effective local policymaking, their analyses are hindered by several challenges, such as limited information attributed to grouping, the presence of non-sampled areas, and the very low frequency of implementing surveys. To address these challenges, we propose a novel grouped-data-based spatio-temporal finite mixture model to model the income distributions of multiple spatial units at multiple time points. A unique feature of the proposed method is that all the areas share common latent distributions and that the mixing proportions that include the spatial and temporal effects capture the potential area-wise heterogeneity. Thus, incorporating these effects can smooth out the quantities of interest over time and space, impute missing values, and predict future values. By treating the HLS data with the proposed method, we obtain complete maps of the income and poverty measures at an arbitrary time point, which can be used to facilitate rapid and efficient policymaking with fine granularity.
Alpha matting is widely used in video conferencing as well as in movies, television, and social media sites. Deep learning approaches to the matte extraction problem are well suited to video conferencing due to the consistent subject matter (front-facing humans), however training-based approaches are somewhat pointless for entertainment videos where varied subjects (spaceships, monsters, etc.) may appear only a few times in a single movie -- if a method of creating ground truth for training exists, just use that method to produce the desired mattes. We introduce a training-free high quality neural matte extraction approach that specifically targets the assumptions of visual effects production. Our approach is based on the deep image prior, which optimizes a deep neural network to fit a single image, thereby providing a deep encoding of the particular image. We make use of the representations in the penultimate layer to interpolate coarse and incomplete "trimap" constraints. Videos processed with this approach are temporally consistent. The algorithm is both very simple and surprisingly effective.
Image stylization has seen significant advancement and widespread interest over the years, leading to the development of a multitude of techniques. Extending these stylization techniques, such as Neural Style Transfer (NST), to videos is often achieved by applying them on a per-frame basis. However, per-frame stylization usually lacks temporal consistency, expressed by undesirable flickering artifacts. Most of the existing approaches for enforcing temporal consistency suffer from one or more of the following drawbacks: They (1) are only suitable for a limited range of techniques, (2) do not support online processing as they require the complete video as input, (3) cannot provide consistency for the task of stylization, or (4) do not provide interactive consistency control. Domain-agnostic techniques for temporal consistency aim to eradicate flickering completely but typically disregard aesthetic aspects. For stylization tasks, however, consistency control is an essential requirement as a certain amount of flickering adds to the artistic look and feel. Moreover, making this control interactive is paramount from a usability perspective. To achieve the above requirements, we propose an approach that stylizes video streams in real-time at full HD resolutions while providing interactive consistency control. We develop a lite optical-flow network that operates at 80 FPS on desktop systems with sufficient accuracy. Further, we employ an adaptive combination of local and global consistency features and enable interactive selection between them. Objective and subjective evaluations demonstrate that our method is superior to state-of-the-art video consistency approaches.
Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.